Ash, Avner; Yasaki, Dan Cohomology of congruence subgroups of \(\mathrm{SL}_3(\mathbb{Z})\), Steinberg modules, and real quadratic fields. (English) Zbl 1514.20197 J. Number Theory 246, 49-86 (2023). MSC: 20J06 11F67 11F75 20G10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gunnells, Paul E.; McConnell, Mark; Yasaki, Dan On the cohomology of congruence subgroups of \(\mathrm{GL}_3\) over the Eisenstein integers. (English) Zbl 1485.11096 Exp. Math. 30, No. 4, 499-512 (2021). Reviewer: Stefan Kühnlein (Karlsruhe) MSC: 11F75 11F67 11G05 11Y99 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hansen, David; Thorne, Jack A. On the \(\mathrm {GL}_n\)-eigenvariety and a conjecture of Venkatesh. (English) Zbl 1430.11078 Sel. Math., New Ser. 23, No. 2, 1205-1234 (2017). MSC: 11F75 11F85 11F70 14F30 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Gunnells, Paul E. Lectures on computing cohomology of arithmetic groups. (English) Zbl 1355.11063 Böckle, Gebhard (ed.) et al., Computations with modular forms. Proceedings of a summer school and conference, Heidelberg, Germany, August–September 2011. Cham: Springer (ISBN 978-3-319-03846-9/hbk; 978-3-319-03847-6/ebook). Contributions in Mathematical and Computational Sciences 6, 3-45 (2014). MSC: 11F75 20G10 20G30 11-02 × Cite Format Result Cite Review PDF Full Text: DOI
Ash, Avner; Gunnells, Paul E.; McConnell, Mark Cohomology of congruence subgroups of \(\text{SL}(4,\mathbb Z)\). II. (English) Zbl 1213.11113 J. Number Theory 128, No. 8, 2263-2274 (2008). Reviewer: Olaf Ninnemann (Berlin) MSC: 11F75 11F80 11F46 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ash, Avner; Pollack, David Everywhere unramified automorphic cohomology for \(\mathrm{SL}_3(\mathbb Z)\). (English) Zbl 1154.11019 Int. J. Number Theory 4, No. 4, 663-675 (2008). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11F75 11F55 11F70 × Cite Format Result Cite Review PDF Full Text: DOI
Gunnells, Paul E.; Yasaki, Dan Hecke operators and Hilbert modular forms. (English) Zbl 1205.11056 van der Poorten, Alfred J. (ed.) et al., Algorithmic number theory. 8th international symposium, ANTS-VIII Banff, Canada, May 17–22, 2008 Proceedings. Berlin: Springer (ISBN 978-3-540-79455-4/pbk). Lecture Notes in Computer Science 5011, 387-401 (2008). MSC: 11F41 11F25 11F67 11Y35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Yasaki, Dan An explicit spine for the Picard modular group over the Gaussian integers. (English) Zbl 1225.11066 J. Number Theory 128, No. 1, 207-234 (2008). MSC: 11F55 11F75 × Cite Format Result Cite Review PDF Full Text: DOI
Gunnells, Paul E. Computing Hecke eigenvalues below the cohomological dimension. (English) Zbl 1037.11037 Exp. Math. 9, No. 3, 351-367 (2000). MSC: 11F75 11F67 11F60 × Cite Format Result Cite Review PDF Full Text: DOI arXiv EuDML
Allison, Gerald; Ash, Avner; Conrad, Eric Galois representations, Hecke operators, and the \(\text{mod-}p\) cohomology of \(\text{GL} (3,\mathbb{Z})\) with twisted coefficients. (English) Zbl 0923.11083 Exp. Math. 7, No. 4, 361-390 (1998). Reviewer: A.Deitmar (Heidelberg) MSC: 11F75 11F80 × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS
Ash, Avner; McConnell, Mark Cohomology at infinity and the well-rounded retract for general linear groups. (English) Zbl 0903.11016 Duke Math. J. 90, No. 3, 549-576 (1997). Reviewer: Joachim Schwermer (Düsseldorf) MSC: 11F75 22E41 57T15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
van Geemen, Bert; van der Kallen, Wilberd; Top, Jaap; Verberkmoes, Alain Hecke eigenforms in the cohomology of congruence subgroups of \(\operatorname{SL}(3,\mathbb Z)\). (English) Zbl 1088.11037 Exp. Math. 6, No. 2, 163-174 (1997). MSC: 11F67 11F75 × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS
Fermigier, Stéfane Vanishing of the cuspidal cohomology of congruence subgroups of \(\text{GL}_ n(\mathbb{Z})\). (Annulation de la cohomologie cuspidale de sous-groupes de congruence de \(\text{GL}_ n (\mathbb{Z})\).) (French) Zbl 0866.11038 Math. Ann. 306, No. 2, 247-256 (1996). Reviewer: A.Deitmar (Heidelberg) MSC: 11F75 11F11 × Cite Format Result Cite Review PDF Full Text: DOI EuDML
van Geemen, Bert; Top, Jaap Selfdual and non-selfdual 3-dimensional Galois representations. (English) Zbl 0840.11023 Compos. Math. 97, No. 1-2, 51-70 (1995). Reviewer: M.Larsen (Philadelphia) MSC: 11F70 14F20 × Cite Format Result Cite Review PDF Full Text: Numdam EuDML
van Geemen, Bert; Top, Jaap A non-selfdual automorphic representation of \(\text{GL}_3\) and a Galois representation. (English) Zbl 0849.11046 Invent. Math. 117, No. 3, 391-401 (1994). Reviewer: Joachim Schwermer (Eichstätt) MSC: 11F75 11F70 11F80 × Cite Format Result Cite Review PDF Full Text: DOI EuDML
Ash, Avner Galois representations attached to mod \(p\) cohomology of \(GL(n,\mathbb{Z})\). (English) Zbl 0774.11024 Duke Math. J. 65, No. 2, 235-255 (1992). Reviewer: J.Schwermer (Eichstätt) MSC: 11F75 11F80 × Cite Format Result Cite Review PDF Full Text: DOI
Ash, Avner; McConnell, Mark Experimental indications of three-dimensional Galois representations from the cohomology of \(\text{SL}(3,\mathbb Z)\). (English) Zbl 0780.11029 Exp. Math. 1, No. 3, 209-223 (1992). Reviewer: Y.Ye (Iowa City) MSC: 11F75 11Y40 11F80 × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS
Ash, Avner; Pinch, Richard; Taylor, Richard An \(\widehat{A_4}\) extension of \({\mathbb{Q}}\) attached to a non-selfdual automorphic form on \(GL(3)\). (English) Zbl 0713.11036 Math. Ann. 291, No. 4, 753-766 (1991). Reviewer: R.Taylor MSC: 11F70 11F67 11F55 × Cite Format Result Cite Review PDF Full Text: DOI EuDML