Andreatta, F.; Barbieri-Viale, L.; Bertapelle, A.; Kahn, B. Motivic periods and Grothendieck arithmetic invariants. (English) Zbl 1433.14017 Adv. Math. 359, Article ID 106880, 50 p. (2020). Reviewer: Alberto Merici (Zürich) MSC: 14F42 14F40 19E15 14C30 14L15 PDF BibTeX XML Cite \textit{F. Andreatta} et al., Adv. Math. 359, Article ID 106880, 50 p. (2020; Zbl 1433.14017) Full Text: DOI arXiv OpenURL
Kahn, Bruno; Saito, Shuji; Yamazaki, Takao; Rülling, Kay Reciprocity sheaves. (English) Zbl 1419.19001 Compos. Math. 152, No. 9, 1851-1898 (2016). Reviewer: Javier Majadas (Santiago de Compostela) MSC: 19E15 14F42 19D45 19F15 PDF BibTeX XML Cite \textit{B. Kahn} et al., Compos. Math. 152, No. 9, 1851--1898 (2016; Zbl 1419.19001) Full Text: DOI arXiv OpenURL
Fasel, Jean; Rao, R. A.; Swan, R. G. On stably free modules over affine algebras. (English) Zbl 1256.13008 Publ. Math., Inst. Hautes Étud. Sci. 116, 223-243 (2012). Reviewer: Avanish Kumar Chaturvedi (Noida) MSC: 13F35 PDF BibTeX XML Cite \textit{J. Fasel} et al., Publ. Math., Inst. Hautes Étud. Sci. 116, 223--243 (2012; Zbl 1256.13008) Full Text: DOI arXiv OpenURL
Hoobler, Raymond T. The Merkuriev–Suslin theorem for any semi-local ring. (English) Zbl 1109.14022 J. Pure Appl. Algebra 207, No. 3, 537-552 (2006). Reviewer: Piotr Krasoń (Szczecin) MSC: 14F22 14F20 13D15 19E08 19E20 PDF BibTeX XML Cite \textit{R. T. Hoobler}, J. Pure Appl. Algebra 207, No. 3, 537--552 (2006; Zbl 1109.14022) Full Text: DOI arXiv OpenURL
Ivorra, Florian \(\ell\)-adic realization of mixed motives. (Réalisation \(\ell\)-adique des motifs mixtes.) (French. Abridged English version) Zbl 1105.14023 C. R., Math., Acad. Sci. Paris 342, No. 7, 505-510 (2006). Reviewer: Claudio Pedrini (Genova) MSC: 14F42 18E30 PDF BibTeX XML Cite \textit{F. Ivorra}, C. R., Math., Acad. Sci. Paris 342, No. 7, 505--510 (2006; Zbl 1105.14023) Full Text: DOI OpenURL
Langer, Andreas; Saito, Shuji Torsion zero-cycles on the self-product of a modular elliptic curve. (English) Zbl 0880.14001 Duke Math. J. 85, No. 2, 315-357 (1996). MSC: 14C05 14H52 14C15 14H25 14G35 11G05 PDF BibTeX XML Cite \textit{A. Langer} and \textit{S. Saito}, Duke Math. J. 85, No. 2, 315--357 (1996; Zbl 0880.14001) Full Text: DOI OpenURL
Suwa, Noriyuki A note on Gersten’s conjecture for logarithmic Hodge-Witt sheaves. (English) Zbl 0838.14014 \(K\)-Theory 9, No. 3, 245-271 (1995). Reviewer: L.Barbieri-Viale (Genova) MSC: 14F30 14M12 14G15 14F05 19E08 PDF BibTeX XML Cite \textit{N. Suwa}, \(K\)-Theory 9, No. 3, 245--271 (1995; Zbl 0838.14014) Full Text: DOI OpenURL
Gabber, Ofer Gersten’s conjecture for some complexes of vanishing cycles. (English) Zbl 0827.19002 Manuscr. Math. 85, No. 3-4, 323-343 (1994). Reviewer: S.Xambó-Descamps (Barcelona) MSC: 19E08 14C25 14F20 19E15 19E20 PDF BibTeX XML Cite \textit{O. Gabber}, Manuscr. Math. 85, No. 3--4, 323--343 (1994; Zbl 0827.19002) Full Text: DOI EuDML OpenURL
Saito, Shuji On the cycle map for torsion algebraic cycles of codimension two. (English) Zbl 0764.14004 Invent. Math. 106, No. 3, 443-460 (1991). Reviewer: S.Xambó-Descamps (Madrid) MSC: 14C25 14C05 PDF BibTeX XML Cite \textit{S. Saito}, Invent. Math. 106, No. 3, 443--460 (1991; Zbl 0764.14004) Full Text: DOI EuDML OpenURL
Colliot-Thélène, Jean-Louis; Raskind, Wayne Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: Un théorème de finitude pour la torsion. (The codimension two Chow group of varieties defined over a number field: A finiteness theorem for the torsion). (French) Zbl 0752.14004 Invent. Math. 105, No. 2, 221-245 (1991). Reviewer: R.M.Miró-Roig (Barcelona) MSC: 14C05 14G25 PDF BibTeX XML Cite \textit{J.-L. Colliot-Thélène} and \textit{W. Raskind}, Invent. Math. 105, No. 2, 221--245 (1991; Zbl 0752.14004) Full Text: DOI EuDML OpenURL
Gros, Michel; Suwa, Noriyuki La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique. (The Gersten conjecture for the logarithmic Hodge-Witt sheaves). (French) Zbl 0715.14011 Duke Math. J. 57, No. 2, 615-628 (1988). MSC: 14F30 14F05 14C30 PDF BibTeX XML Cite \textit{M. Gros} and \textit{N. Suwa}, Duke Math. J. 57, No. 2, 615--628 (1988; Zbl 0715.14011) Full Text: DOI OpenURL