Nguyen Huynh Phan On the topology of the space of reachable antisymmetric linear Hamiltonian systems. (Sur la topologie de l’espace des systèmes linéaires hamiltoniens anti-symétriques accessibles.) (French) Zbl 0811.70012 Ann. Inst. Fourier 44, No. 3, 967-985 (1994). Summary: We construct canonical forms with continuation on the strata of the stratification on the space of reachable antisymmetric Hamiltonian linear systems \(HA_{n,m,p}\). We prove that the homology group of \(HA_{n,m,p}\) is isomorphic to those of the Grassmann manifold. Then we prove that \(HA_{n,m,p}\) is homotopically equivalent to the space of reachable linear systems. MSC: 70H05 Hamilton’s equations 55N10 Singular homology and cohomology theory 37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems Keywords:homology group; Grassmann manifold PDF BibTeX XML Cite \textit{Nguyen Huynh Phan}, Ann. Inst. Fourier 44, No. 3, 967--985 (1994; Zbl 0811.70012) Full Text: DOI Numdam EuDML References: [1] [1] , Combinatorial theory, Grundlehren der Math. Wissenschaften, 234, Springer, 1979. · Zbl 0415.05001 [2] [2] and , A survey of modern algebra, Macmillan, New-York, 1977. · Zbl 0365.00006 [3] [3] et , La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France, 89 (1966), 461-513. · Zbl 0102.38502 [4] [11] , Reducibility condition of Pochhammer’s equation. Master Thesis, Tokyo Univ., 1973 · Zbl 0116.40204 [5] [5] , The stable homotopy of the classical groups, Annals of Math., 70 (1959), 313-337. · Zbl 0129.15601 [6] [6] , Some geometric questions in the theory of linear systems, IEEE Trans. Autom. Control AC., 21 (1976), 449-455. · Zbl 0332.93040 [7] [7] , A classification of linear controllable systemes, Kybernetica, 3 (1970), 173-187. · Zbl 0199.48202 [8] [8] , Algebraic and Geometric aspects of the analysis of feedback systems, NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences, vol. 62 : Geometrical Methods for the Theory of linear systems, eds C.I. Byrnes and C. Martin (Pro. of NATO Adv. Stu. In. and AMS summer in App. Math., Harvard University, Cambridge, Mass., June 18-29, 1979), D. Reidel Publishing Company, 1980, p. 83-122. · Zbl 0479.93048 [9] [9] and , A note on the topology of space of Hamiltonian transfer functions, Lectures in Appl. Math., vol. 18, p. 7-26, 1980, AMS-NASA-NATO Summer Sem., Havard Univ. Cambridge, Mass. [10] [10] and , On certain topological invariants arising in system theory, from New Directions in Applied Mathematics 13, P. Hilton, G. Young eds, New-York, Springer, Verlag, 29-71, 1981. · Zbl 0483.93049 [11] [Yo] , On the zeta functions of Shimura varieties and periods of Hilbert modular forms · Zbl 0823.11018 [12] [12] , Some relationships between homotopy theory and differential geometry, Ph. D. Thesis, Wolfson college, University of Oxford, 1981. [13] [13] and , Differential topology, Prentice-Hall, Englewood Cliffs., New Jersey, 1974. · Zbl 0361.57001 [14] [14] , Moduli and canonical forms for linear dynamical systems II, The topological case, Math. Systems Theory, 10 (1976/1977), 363-385. · Zbl 0396.54037 [15] [15] , Moduli and canonical forms for linear dynamical systems. III: The algebraic geometry case, Lie Groups: History frontiers and Applications, vol. 7, The 1976 AMES Research Center (NASA) Conference on Geometric Control Theory, C. Martin and R. Hermann eds, p. 291-336, Mat. Sci. Press. · Zbl 0368.93007 [16] [16] , (Fine) Moduli (Space) for linear systems: What are they and What are they good for? NATO Advanced Study Institutes Series, Series C, Mathematical and Physical Sciences, vol. 62: Geometrical Methods for the Theory of linear systems, C.I. Byrnes and C. Martin eds (Proc. of NATO Adv. Stu. In. and AMS summer in App. Math., Harvard University, Cambridge, Mass., June 18-29, 1979), D. Reidel Publishing Company, 1980, p. 125-193. · Zbl 0481.93023 [17] [Gar] , Foliations, the ergodic theorem and brownian motion, Jour. of Funct. Anal., 51 (1983 · Zbl 0524.58026 [18] [18] , Metrical and topological aspects of linear control theory., Syst. Anal. Model. Simul., 4 (1987), 1, 3-36. · Zbl 0676.93038 [19] [19] , , , and al., Introduction to Mathematical system theory, Lecture notes for a joint course at the Universities of Warwick and Bremen, 1983. · Zbl 0565.58027 [20] [20] , Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, New York, 1976. · Zbl 0356.57001 [21] [21] , and , Topics in Mathematical System Theory, McGraw-Hill, 1969. · Zbl 0231.49001 [22] [22] , Sur un critère d’équisingularité, fonctions de plusieurs variables complexes, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, New York, vol. 409 (1974), 124-160. · Zbl 0296.14004 [23] [23] et , Cycles évanescents, sections planes et conditions de Whitney II, Proc. Symposia Pure Math., vol. 40, part 2 (1983), 65-103. · Zbl 0532.32003 [24] [24] and , Some space of holomorphic maps to complex Grassmann manifolds, J. Differential Geometry, 33 (1991), 301-324. · Zbl 0736.54008 [25] [25] , Homology and homotopy theory, Marcel Dekker, New York, 1978. [26] [26] , Morse theory, Princeton University Press, 1963. · Zbl 0108.10401 [27] [27] and , Characteristic classes, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974. · Zbl 0298.57008 [28] [28] et , Introduction à la théorie des groupes de Lie classiques, Méthodes, Hermann, Paris, 1986. · Zbl 0598.22001 [29] [29] , Analysis on real and complex manifold, Masson CIE, Paris, North-Holland Pub. Comp., Amsterdam, 1968. · Zbl 0188.25803 [30] [30] , On the topology of the space of reachable symmetric linear systems, Math. J. (TAP CHI TOAN HOC), Ha Noi, XV, I (1987), 16-26. · Zbl 0940.93502 [31] [31] , On the topology of the space of reachable symmetric linear systems, Lecture Notes in Mathamatics, vol. 1474, 1991, 235-253, Springer-Verlag, Berlin-Heidelberg, New York (Proccedings of the International Conference on Algebraic Topology, Poznan, Poland, June 22-27, S. Jackowski, B. OLiver, K. Pawalowski eds). · Zbl 0760.55007 [32] [32] , On the topology of the space of reachable skew-symmetric Hamiltonian linear systems, Rendiconti di Matematica, Serie VII, vol. 11, Roma 541-558, 1991. · Zbl 0735.70013 [33] [33] , Invariant description of linear time-invariant controllable systems, SIAM J. Control, 10 (1972), 252-264. · Zbl 0251.93013 [34] [34] , Algebraic topology, McGraw-Hill, New York, 1966. · Zbl 0145.43303 [35] [35] , The topology of space of rational funtions, Acta Math., 143 (1979), 39-72. · Zbl 0427.55006 [36] [36] , Tangents to an analytic variety, Ann. of Math., (2), 81 (1965), 496-549. · Zbl 0152.27701 [37] [37] , Linear multivariable control : A geometric approach, Lecture Notes, Economical and Math. Systems, 101, Springer, 1974. · Zbl 0314.93007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.