Mecheri, Salah Positive answer to the invariant and hyperinvariant subspaces problems for hyponormal operators. (English) Zbl 07501804 Georgian Math. J. 29, No. 2, 233-244 (2022). MSC: 47B47 47A30 47B20 47A15 PDF BibTeX XML Cite \textit{S. Mecheri}, Georgian Math. J. 29, No. 2, 233--244 (2022; Zbl 07501804) Full Text: DOI OpenURL
Bračič, Janko Local commutants and ultrainvariant subspaces. (English) Zbl 07412869 J. Math. Anal. Appl. 506, No. 2, Article ID 125693, 19 p. (2022). MSC: 47Axx 47Bxx 47-XX PDF BibTeX XML Cite \textit{J. Bračič}, J. Math. Anal. Appl. 506, No. 2, Article ID 125693, 19 p. (2022; Zbl 07412869) Full Text: DOI arXiv OpenURL
Grivaux, Sophie; Matheron, Étienne; Menet, Quentin Does a typical \(\ell_p\)-space contraction have a non-trivial invariant subspace? (English) Zbl 07398006 Trans. Am. Math. Soc. 374, No. 10, 7359-7410 (2021). Reviewer: Janko Bračič (Ljubljana) MSC: 47A15 47A16 54E52 PDF BibTeX XML Cite \textit{S. Grivaux} et al., Trans. Am. Math. Soc. 374, No. 10, 7359--7410 (2021; Zbl 07398006) Full Text: DOI arXiv OpenURL
Menet, Quentin Invariant subspaces for Fréchet spaces without continuous norm. (English) Zbl 07357564 Proc. Am. Math. Soc. 149, No. 8, 3379-3393 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 47A15 47A16 PDF BibTeX XML Cite \textit{Q. Menet}, Proc. Am. Math. Soc. 149, No. 8, 3379--3393 (2021; Zbl 07357564) Full Text: DOI arXiv OpenURL
Wu, Xinxing; Luo, Yang Invariance of distributional chaos for backward shifts. (English) Zbl 07347964 Oper. Matrices 14, No. 1, 1-7 (2020). MSC: 47A16 47B37 PDF BibTeX XML Cite \textit{X. Wu} and \textit{Y. Luo}, Oper. Matrices 14, No. 1, 1--7 (2020; Zbl 07347964) Full Text: DOI arXiv OpenURL
Chamizo, Fernando; Gallardo-Gutiérrez, Eva A.; Monsalve-López, Miguel; Ubis, Adrián Invariant subspaces for Bishop operators and beyond. (English) Zbl 07281392 Adv. Math. 375, Article ID 107365, 25 p. (2020). MSC: 47A15 47B37 47B38 PDF BibTeX XML Cite \textit{F. Chamizo} et al., Adv. Math. 375, Article ID 107365, 25 p. (2020; Zbl 07281392) Full Text: DOI arXiv OpenURL
Goliński, Michał; Przestacki, Adam The invariant subspace problem for the space of smooth functions on the real line. (English) Zbl 1454.47010 J. Math. Anal. Appl. 482, No. 2, Article ID 123565, 21 p. (2020). Reviewer: Ali Abkar (Qazvin) MSC: 47A15 47B37 46E10 PDF BibTeX XML Cite \textit{M. Goliński} and \textit{A. Przestacki}, J. Math. Anal. Appl. 482, No. 2, Article ID 123565, 21 p. (2020; Zbl 1454.47010) Full Text: DOI arXiv OpenURL
Tcaciuc, Adi On quasinilpotent operators and the invariant subspace problem. (English) Zbl 07087189 J. Math. Anal. Appl. 477, No. 1, 187-195 (2019). MSC: 47-XX 35-XX PDF BibTeX XML Cite \textit{A. Tcaciuc}, J. Math. Anal. Appl. 477, No. 1, 187--195 (2019; Zbl 07087189) Full Text: DOI arXiv OpenURL
Tcaciuc, Adi The invariant subspace problem for rank-one perturbations. (English) Zbl 07080118 Duke Math. J. 168, No. 8, 1539-1550 (2019). MSC: 47A15 47A55 PDF BibTeX XML Cite \textit{A. Tcaciuc}, Duke Math. J. 168, No. 8, 1539--1550 (2019; Zbl 07080118) Full Text: DOI arXiv Euclid OpenURL
Zsák, András On the solution of the scalar-plus-compact problem by Argyros and Haydon. (English) Zbl 1414.46011 Eur. Math. Soc. Newsl. 110, 8-15 (2018). Reviewer: Barry Turett (Rochester) MSC: 46B03 46B28 47A15 PDF BibTeX XML Cite \textit{A. Zsák}, Eur. Math. Soc. Newsl. 110, 8--15 (2018; Zbl 1414.46011) Full Text: DOI OpenURL
Menet, Quentin Invariant subspaces for non-normable Fréchet spaces. (English) Zbl 06967036 Adv. Math. 339, 495-539 (2018). MSC: 47A15 47A16 PDF BibTeX XML Cite \textit{Q. Menet}, Adv. Math. 339, 495--539 (2018; Zbl 06967036) Full Text: DOI arXiv OpenURL
Lomonosov, Viktor I.; Shulman, Viktor S. Halmos problems and related results in the theory of invariant subspaces. (English. Russian original) Zbl 06921007 Russ. Math. Surv. 73, No. 1, 31-90 (2018); translation from Usp. Mat. Nauk 73, No. 1, 35-98 (2018). MSC: 47A15 47L10 47L30 PDF BibTeX XML Cite \textit{V. I. Lomonosov} and \textit{V. S. Shulman}, Russ. Math. Surv. 73, No. 1, 31--90 (2018; Zbl 06921007); translation from Usp. Mat. Nauk 73, No. 1, 35--98 (2018) Full Text: DOI OpenURL
Kasprzak, Henryk The invariant subspace problem for non-Archimedean Köthe spaces. (English) Zbl 1367.47079 J. Math. Anal. Appl. 453, No. 2, 1086-1110 (2017); corrigendum ibid. 459, No. 2, 1296-1299 (2018). MSC: 47S10 47A15 PDF BibTeX XML Cite \textit{H. Kasprzak}, J. Math. Anal. Appl. 453, No. 2, 1086--1110 (2017; Zbl 1367.47079) Full Text: DOI OpenURL
Sirotkin, Gleb; Wallis, Ben Almost-invariant and essentially-invariant halfspaces. (English) Zbl 1353.47009 Linear Algebra Appl. 507, 399-413 (2016). MSC: 47A15 PDF BibTeX XML Cite \textit{G. Sirotkin} and \textit{B. Wallis}, Linear Algebra Appl. 507, 399--413 (2016; Zbl 1353.47009) Full Text: DOI arXiv OpenURL
López García, Marcos The invariant subspace problem. (El problema del subespacio invariante.) (Spanish) Zbl 1445.47007 Misc. Mat. 58, 111-124 (2014). MSC: 47A15 47-01 PDF BibTeX XML Cite \textit{M. López García}, Misc. Mat. 58, 111--124 (2014; Zbl 1445.47007) Full Text: Link OpenURL
Ji, Youqing; Xu, Xinjun Operators similar to their restrictions to invariant subspaces. (English) Zbl 1329.47015 J. Math. Anal. Appl. 416, No. 2, 748-767 (2014). Reviewer: Kui Ji (Shijiazhuang) MSC: 47A65 47A15 47A16 47A46 PDF BibTeX XML Cite \textit{Y. Ji} and \textit{X. Xu}, J. Math. Anal. Appl. 416, No. 2, 748--767 (2014; Zbl 1329.47015) Full Text: DOI OpenURL
Grivaux, Sophie; Roginskaya, Maria A general approach to Read’s type constructions of operators without non-trivial invariant closed subspaces. (English) Zbl 1305.47008 Proc. Lond. Math. Soc. (3) 109, No. 3, 596-652 (2014). Reviewer: Antonios Manoussos (Bielefeld) MSC: 47A15 46B20 47A16 46B10 46B25 PDF BibTeX XML Cite \textit{S. Grivaux} and \textit{M. Roginskaya}, Proc. Lond. Math. Soc. (3) 109, No. 3, 596--652 (2014; Zbl 1305.47008) Full Text: DOI arXiv OpenURL
Sirotkin, Gleb; Wallis, Ben The structure of almost-invariant half-spaces for some operators. (English) Zbl 1308.47007 J. Funct. Anal. 267, No. 7, 2298-2312 (2014). Reviewer: Vladimir S. Pilidi (Rostov-na-Donu) MSC: 47A15 47A10 PDF BibTeX XML Cite \textit{G. Sirotkin} and \textit{B. Wallis}, J. Funct. Anal. 267, No. 7, 2298--2312 (2014; Zbl 1308.47007) Full Text: DOI arXiv OpenURL
Chalendar, Isabelle; Partington, Jonathan R. An overview of some recent developments on the invariant subspace problem. (English) Zbl 1278.47017 Concr. Oper. 1, 1-10 (2013). Reviewer: Miguel Lacruz (Sevilla) MSC: 47A15 47B37 47B33 47B07 PDF BibTeX XML Cite \textit{I. Chalendar} and \textit{J. R. Partington}, Concr. Oper. 1, 1--10 (2013; Zbl 1278.47017) Full Text: DOI OpenURL
Espínola, Rafa; Lacruz, Miguel Applications of fixed point theorems in the theory of invariant subspaces. (English) Zbl 1475.47008 Fixed Point Theory Appl. 2012, Paper No. 197, 11 p. (2012). MSC: 47A15 47H10 47-02 PDF BibTeX XML Cite \textit{R. Espínola} and \textit{M. Lacruz}, Fixed Point Theory Appl. 2012, Paper No. 197, 11 p. (2012; Zbl 1475.47008) Full Text: DOI arXiv OpenURL
Shu, Yonglu; Zhao, Xianfeng; Zhou, Yunhua The conjugate class of a supercyclic operator. (English) Zbl 1294.47009 Complex Anal. Oper. Theory 6, No. 3, 603-611 (2012). Reviewer: Antonios Manoussos (Bielefeld) MSC: 47A16 PDF BibTeX XML Cite \textit{Y. Shu} et al., Complex Anal. Oper. Theory 6, No. 3, 603--611 (2012; Zbl 1294.47009) Full Text: DOI OpenURL
Goliński, Michał Invariant subspace problem for classical spaces of functions. (English) Zbl 1250.47006 J. Funct. Anal. 262, No. 3, 1251-1273 (2012). Reviewer: Vladimir S. Pilidi (Rostov-na-Donu) MSC: 47A15 46A45 47B37 47B38 PDF BibTeX XML Cite \textit{M. Goliński}, J. Funct. Anal. 262, No. 3, 1251--1273 (2012; Zbl 1250.47006) Full Text: DOI OpenURL
Argyros, Spiros A.; Haydon, Richard G. A hereditarily indecomposable \(\mathcal L_{\infty}\)-space that solves the scalar-plus-compact problem. (English) Zbl 1223.46007 Acta Math. 206, No. 1, 1-54 (2011). Reviewer: Dirk Werner (Berlin) MSC: 46B03 46B28 47A15 PDF BibTeX XML Cite \textit{S. A. Argyros} and \textit{R. G. Haydon}, Acta Math. 206, No. 1, 1--54 (2011; Zbl 1223.46007) Full Text: DOI arXiv OpenURL
Chan, Kit C.; Sanders, Rebecca Common hypercyclic vectors for the conjugate class of a hypercyclic operator. (English) Zbl 1208.47013 J. Math. Anal. Appl. 375, No. 1, 139-148 (2011). Reviewer: Raymond Mortini (Metz) MSC: 47A16 PDF BibTeX XML Cite \textit{K. C. Chan} and \textit{R. Sanders}, J. Math. Anal. Appl. 375, No. 1, 139--148 (2011; Zbl 1208.47013) Full Text: DOI Link OpenURL
Śliwa, Wiesław An explicit example concerning the invariant subspace problem for Banach spaces. (English) Zbl 1197.47017 Rocky Mt. J. Math. 40, No. 2, 627-641 (2010). Reviewer: Woo Young Lee (Seoul) MSC: 47A15 PDF BibTeX XML Cite \textit{W. Śliwa}, Rocky Mt. J. Math. 40, No. 2, 627--641 (2010; Zbl 1197.47017) Full Text: DOI OpenURL
Sirotkin, Gleb Infinite matrices with “few” non-zero entries and without non-trivial invariant subspaces. (English) Zbl 1162.47006 J. Funct. Anal. 256, No. 6, 1865-1874 (2009). Reviewer: Miyeon Kwon (Platteville, WI) MSC: 47A15 47B65 PDF BibTeX XML Cite \textit{G. Sirotkin}, J. Funct. Anal. 256, No. 6, 1865--1874 (2009; Zbl 1162.47006) Full Text: DOI OpenURL
Sirotkin, Gleb On positive transitive operators. (English) Zbl 1172.47008 Positivity 13, No. 1, 273-276 (2009). Reviewer: Gabriel Prajitura (Brockport) MSC: 47A15 PDF BibTeX XML Cite \textit{G. Sirotkin}, Positivity 13, No. 1, 273--276 (2009; Zbl 1172.47008) Full Text: DOI OpenURL
Radjavi, Heydar; Troitsky, Vladimir G. Invariant sublattices. (English) Zbl 1187.47009 Ill. J. Math. 52, No. 2, 437-462 (2008). Reviewer: Constantin Niculescu (Craiova) MSC: 47A15 15B48 47B65 PDF BibTeX XML Cite \textit{H. Radjavi} and \textit{V. G. Troitsky}, Ill. J. Math. 52, No. 2, 437--462 (2008; Zbl 1187.47009) Full Text: Euclid OpenURL
León-Saavedra, F.; Piqueras-Lerena, A. On weak positive supercyclicity. (English) Zbl 1162.47009 Isr. J. Math. 167, 303-313 (2008). Reviewer: Abdellatif Bourhim (Syracuse) MSC: 47A16 PDF BibTeX XML Cite \textit{F. León-Saavedra} and \textit{A. Piqueras-Lerena}, Isr. J. Math. 167, 303--313 (2008; Zbl 1162.47009) Full Text: DOI OpenURL
Androulakis, George A new method for constructing invariant subspaces. (English) Zbl 1121.47003 J. Math. Anal. Appl. 333, No. 2, 1254-1263 (2007). Reviewer: Shanli Sun (Beijing) MSC: 47A15 47H04 47H10 PDF BibTeX XML Cite \textit{G. Androulakis}, J. Math. Anal. Appl. 333, No. 2, 1254--1263 (2007; Zbl 1121.47003) Full Text: DOI arXiv OpenURL
Androulakis, George; Enflo, Per A property of strictly singular one-to-one operators. (English) Zbl 1077.47019 Ark. Mat. 41, No. 2, 233-252 (2003). Reviewer: Aicke Hinrichs (Jena) MSC: 47B10 47L10 47L20 46B99 PDF BibTeX XML Cite \textit{G. Androulakis} and \textit{P. Enflo}, Ark. Mat. 41, No. 2, 233--252 (2003; Zbl 1077.47019) Full Text: DOI arXiv OpenURL
Montes-Rodríguez, Alfonso; Salas, Héctor N. Supercyclic subspaces: Spectral theory and weighted shifts. (English) Zbl 1008.47010 Adv. Math. 163, No. 1, 74-134 (2001). Reviewer: Jose Bonet (Valencia) MSC: 47A16 47B37 PDF BibTeX XML Cite \textit{A. Montes-Rodríguez} and \textit{H. N. Salas}, Adv. Math. 163, No. 1, 74--134 (2001; Zbl 1008.47010) Full Text: DOI OpenURL
Loy, R. J.; Read, C. J.; Runde, V.; Willis, G. A. Amenable and weakly amenable Banach algebras with compact multiplication. (English) Zbl 0946.46041 J. Funct. Anal. 171, No. 1, 78-114 (2000). Reviewer: Catalin Badea (Villeneuve d’Ascq) MSC: 46H05 PDF BibTeX XML Cite \textit{R. J. Loy} et al., J. Funct. Anal. 171, No. 1, 78--114 (2000; Zbl 0946.46041) Full Text: DOI OpenURL
Esterle, J.; Zarrabi, M. Local properties of powers of operators. (English) Zbl 0823.47018 Arch. Math. 65, No. 1, 53-60 (1995). Reviewer: J.Esterle (Bordeaux) MSC: 47A65 PDF BibTeX XML Cite \textit{J. Esterle} and \textit{M. Zarrabi}, Arch. Math. 65, No. 1, 53--60 (1995; Zbl 0823.47018) Full Text: DOI OpenURL
Jafarian, A. A.; Sourour, A. R. Linear maps that preserve the commutant, double commutant or the lattice of invariant subspaces. (English) Zbl 0817.47006 Linear Multilinear Algebra 38, No. 1-2, 117-129 (1994). MSC: 47A15 47B47 PDF BibTeX XML Cite \textit{A. A. Jafarian} and \textit{A. R. Sourour}, Linear Multilinear Algebra 38, No. 1--2, 117--129 (1994; Zbl 0817.47006) Full Text: DOI OpenURL
Godefroy, Gilles; Shapiro, Joel H. Operators with dense, invariant, cyclic vector manifolds. (English) Zbl 0732.47016 J. Funct. Anal. 98, No. 2, 229-269 (1991). Reviewer: H.Bercovici (Bloomington) MSC: 47A65 PDF BibTeX XML Cite \textit{G. Godefroy} and \textit{J. H. Shapiro}, J. Funct. Anal. 98, No. 2, 229--269 (1991; Zbl 0732.47016) Full Text: DOI OpenURL
Loginov, A. I.; Shul’man, V. S. Invariant subspaces of operator algebras. (English. Russian original) Zbl 0725.47005 J. Sov. Math. 54, No. 5, 1177-1236 (1991); translation from Itogi Nauki Tekh., Ser. Mat. Anal. 26, 65-145 (1988). MSC: 47A15 47L10 PDF BibTeX XML Cite \textit{A. I. Loginov} and \textit{V. S. Shul'man}, J. Sov. Math. 54, No. 5, 1177--1236 (1991; Zbl 0725.47005); translation from Itogi Nauki Tekh., Ser. Mat. Anal. 26, 65--145 (1988) Full Text: DOI OpenURL
Żelazko, Wiesław On certain open problems in topological algebras. (English) Zbl 0755.46019 Rend. Semin. Mat. Fis. Milano 59, 49-58 (1989). Reviewer: J.B.Prolla (Campinas) MSC: 46H05 PDF BibTeX XML Cite \textit{W. Żelazko}, Rend. Semin. Mat. Fis. Milano 59, 49--58 (1989; Zbl 0755.46019) Full Text: DOI OpenURL
Read, C. J. The invariant subspace problem for a class of Banach spaces. II: Hypercyclic operators. (English) Zbl 0782.47002 Isr. J. Math. 63, No. 1, 1-40 (1988). MSC: 47A15 PDF BibTeX XML Cite \textit{C. J. Read}, Isr. J. Math. 63, No. 1, 1--40 (1988; Zbl 0782.47002) Full Text: DOI OpenURL
Atzmon, Aharon A model for operators with cyclic adjoint. (English) Zbl 0623.47006 Integral Equations Oper. Theory 10, 153-163 (1987). Reviewer: J.A.Ball MSC: 47A45 47A15 46E20 PDF BibTeX XML Cite \textit{A. Atzmon}, Integral Equations Oper. Theory 10, 153--163 (1987; Zbl 0623.47006) Full Text: DOI OpenURL
Beauzamy, B. Un opérateur sans sous-espace invariant: Simplification de l’exemple de P. Enflo. (French) Zbl 0571.47002 Integral Equations Oper. Theory 8, 314-384 (1985). Reviewer: R.G.Douglas MSC: 47A15 PDF BibTeX XML Cite \textit{B. Beauzamy}, Integral Equations Oper. Theory 8, 314--384 (1985; Zbl 0571.47002) Full Text: DOI OpenURL