×

Asymptotics of sums of random variables from the domain of attraction of a stable law. (English. Russian original) Zbl 0623.60047

Ukr. Math. J. 38, 598-603 (1986); translation from Ukr. Mat. Zh. 38, No. 6, 713-718 (1986).
This article extends the author’s previous works, Dokl. Akad. Nauk Ukr. SSR, Ser. A 1984, No.7, 9-11 (1984; Zbl 0553.60035) and Teor. Veroyatn. Primen. 30, No.1, 132-136 (1985; Zbl 0574.60046), where the strong invariance principle (s.i.p.) for the partial sums \(S_ n=\sum_{1\leq i\leq n}\xi_ i\) of i.i.d. r.v. from the domain of normal attraction of the stable law \(G_{\alpha,\beta}\), \(| \beta | \leq 1\), \(0<\alpha <2\) is discussed. Here the error term in s.i.p. is decreased from \(o(n^{1/\alpha})\) to \(o(n^{1/\alpha -\rho})\), \(\rho >0.\)
Let f(u) be the characteristic function (ch.f.) of \(\xi_ 1\) and \(g_{\alpha,\beta}(u)\) be the ch.f. of the stable law, \(E\xi_ 1=0\) for \(\alpha >1\). The main result is the following
Theorem. If for some \(\ell >\alpha\), \(a_ 1,a_ 2>0\), \(| f(u)- g_{\alpha,\beta}(u)| \leq a_ 2| u|^{\ell}\) as \(| u| <a_ 1\), then we can redefine \(\{\xi_ i\}\) on a new probability space together with a stable process \(Y_{\alpha,\beta}(t)\), \(t>0\), such that \[ P\{| S_{[t]}-Y_{\alpha,\beta}(t)| =o(t^{1/\alpha - \rho})\}=1,\text{ for every } \rho \in (0,\quad 1/\alpha (A+1)). \] The conditions of this theorem are compared in details with assumptions of W. Stout [Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 69-70 (1974; Zbl 0283.60026)] where other methods are used to prove s.i.p.; see also E. Fisher [ibid. 67, 461-471 (1984; Zbl 0535.60025)] and J. Mijnheer [Information theory, statistical decision functions, random processes, Trans. 9th Prague Conf., Prague 1982, Vol. B, 83-89 (1983; Zbl 0539.60030)].
The article presents also some results about the rate of growth of \(S_ n\) as \(n\to \infty\) derived strictly from the properties of \(Y_{\alpha,\beta}(t)\).

MSC:

60F17 Functional limit theorems; invariance principles
60J99 Markov processes
60G50 Sums of independent random variables; random walks
Full Text: DOI

References:

[1] W. Stout, ?Almost sure invariance principles when Ex 1 2 =?,? Z. Wahrsch. Verw. Geb.,49, No. 1, 23-32 (1979). · doi:10.1007/BF00534337
[2] N. M. Zinchenko, ?Strong invariance principle for sums of random variables from the domain of attraction of a stable law,? Reor. Veroyatn. Primen.,30, No. 1, 131-136 (1985). · Zbl 0574.60046
[3] E. Fisher, ?An almost sure invariance principle for random variables in the domain of attraction of a stable law,? Z. Wahrsch. Verw. Geb.,67, No. 4 (1984). · Zbl 0535.60025
[4] J. Mijnheer, ?Strong approximation of partial sums of the i.i.d.r.v. in the domain of attraction of a symmetric stable distribution,? in: Trans, of the Ninth Prague Conference on Inf. Theory, Statist. Decision Functions, Random Processes, Prague (1983), pp. 85-89.
[5] M. Csörgo and P. Revesz, Strong Approximation in Probability and Statistics, Akademia, Budapest (1981).
[6] V. N. Paulauskas, ?Estimates of the error term in the limit theorem in the case of a stable limit law,? Lit. Mat. Sb.,14, No. 1, 165-187 (1974).
[7] N. B. Kalinauskaite, ?Upper and lower functions for stable processes,? Liet. Mat. Rinkiys,5, No. 4, 541-553 (1965). · Zbl 0154.18903
[8] N. M. Zinchenko, ?Rate of growth of stochastic processes and fields with independent increments,? Teor. Veroyatn. Mat. Statistika, No. 30, 52-56 (1984). · Zbl 0566.60043
[9] M. D. Donsker and S. R. S. Varadhan, ?On LIL for local times,? Commun. Pure Appl. Math.,30, No. 6, 707-753 (1977). · doi:10.1002/cpa.3160300603
[10] N. C. Jain, ?A Donsker-Varadhan type invariance principle,? Z. Wahrsch. Verw. Geb.,59, No. 2, 117-138 (1982). · Zbl 0458.60043 · doi:10.1007/BF00575529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.