×

Some remarks on the notion of compensation in MCDM. (English) Zbl 0598.90057

This paper revisits the notion of compensation of independent multi- attribute preference structures. Firstly the author proposes four definitions for noncompensation in the line of those of P. C. Fishburn [Synthese 33, 393-403 (1976; Zbl 0357.90004)]:
Assume that \((X,\succcurlyeq,\succcurlyeq_ 1,\succcurlyeq_ 2,...,\succcurlyeq_ n)\) is a multi-attribute preference structure on \(X=X_ 1\times X_ 2\times...\times X_ n\). We can define \(P(x,y)=\{i\in \{1,2,...,n\}\) \(|\) \(x_ i\succ_{i}y_ i\}\), \(P(y,x)=\{i\in 1,2,...,n\}\) \(|\) \(y_ i\succ_{i}x_ i\}\), and \(I(x,y)=I(y,x)=\{i\in \{1,2,...,n\}\) \(|\) \(x_ i\succ_{i}y_ i\}\). Then the preference structure is noncompensatory if: \((P(x,y)=P(z,w)\) and \(P(y,x)=P(w,z))\Rightarrow (x\succcurlyeq y\) iff \(z\succcurlyeq w).\)
Different variations in the definition of ”noncompensatoriness” rely on the differences in the role of the set I. The ultimate purpose of the author is apparently to obtain a ”compensatoriness scale” to order the aggregation procedures. This goal remains far from being attained.
In the second part of the paper, the author is interested in the intransitive and noncompensatory models as introduced by K. Tversky with his ”additive preference model” [”Intransitivity of preferences”, Psychological Review 76, 31-48 (1969)]. He states conditions on the structure of preferences in order that there exist real-valued functions \(p_ i\) such that \[ (1)\quad x\succcurlyeq y\quad \Leftrightarrow \quad \sum p_ i(x_ i,y_ i)\geq 0\quad and\quad p_ i(x_ i,y_ i)=-p_ i(y_ i,x_ i). \] Remember that Tversky’s model requires real-valued, strictly increasing functions \(\Phi_ i\) such that \[ x\succcurlyeq y\quad \Leftrightarrow \quad \sum \Phi_ i(u_ i(x_ i)-u_ i(y_ i))\geq 0\quad and\quad \Phi_ i(\delta)=-\Phi_ i(-\delta). \] In the case of \(X=X_ 1\times X_ 2\) the author gives various conditions on the preference structure \((\succcurlyeq,\succcurlyeq_ 1,\succcurlyeq_ 2)\) (mainly completeness and cancellation) which entail the existence of \(p_ 1\) and \(p_ 2\) satisfying (1). Finally he provides a condition which amounts to relaxing the strictly increasing assumption in Tversky’s model.
In a few words, it is an important paper for people who are interested in compensation and with its extensive bibliography it should be useful for further research on this topic.
Reviewer: J.-Ch.Pomerol

MSC:

90B50 Management decision making, including multiple objectives
91B06 Decision theory
91B08 Individual preferences
91B16 Utility theory

Citations:

Zbl 0357.90004

Software:

ELECTRE
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beals, R.; Krantz, D.H.; Tversky, A., The foundations of multidimentional scaling, Psychological review, 75, 127-142, (1968) · Zbl 0235.92010
[2] Bouyssou, D., Approaches descriptives et constructives d’aide à la décision: fondements et comparaison, (1984), Université de Paris Dauphine France, unpublished Doctoral Dissertation
[3] Bouyssou, D.; Vansnick, J.C., Noncompensatory and generalized noncompensatory preference structures, (), submitted · Zbl 0605.90003
[4] Brans, J.P.; Vincke, P., Une méthode de surclassement basée sur des intensités de préférence, Cahiers du CERO, 24, 173-184, (1982) · Zbl 0493.90080
[5] Burros, R., Axiomatic analysis of non-transitive preference and indiffirence, Theory and decision, 5, 185-204, (1974) · Zbl 0288.90008
[6] Chankong, V.; Haimes, Y.Y., Multiobjective decision-making theory and methodology, (1983), North-Holland Amsterdam · Zbl 0525.90085
[7] Croon, M.A., The axiomatization of additive difference models for preference judgements, () · Zbl 0569.92027
[8] Doignon, J.P.; Ducamp, A.; Falmagne, J.C., On realizable biorders and the biorder dimension of a relation, Journal of mathematical psychology, 28, 73-109, (1984) · Zbl 0562.92018
[9] Ducamp, A.; Falmagne, J.C., Composite measurement, Journal of mathematical psychology, 6, 359-390, (1969) · Zbl 0184.45501
[10] Einhorn, H.J., The use of nonlinear, noncompensatory models in decision-making, Psychological bulletin, 73, 221-230, (1970)
[11] Fishburn, P.C., Utility theory for decision-making, (1970), Wiley New York · Zbl 0213.46202
[12] Fishburn, P.C., Noncompensatory preferences, Synthese, 33, 393-403, (1976) · Zbl 0357.90004
[13] Fishburn, P.C., A survey of multiattribute/multicriteria evaluation theories, (), 181-224
[14] Fishburn, P.C., Lexicographic additive differences, Journal of mathematical psychology, 21, 191-218, (1980) · Zbl 0436.92029
[15] Fishburn, P.C., Multiattribute nonlinear utility theory, Management science, 30, 1301-1310, (1985) · Zbl 0555.90008
[16] Goicochea, A.; Hansen, D.R.; Duckstein, L., Multiobjective decision analysis with engineering and business applications, (1982), Wiley New York
[17] Goodman, L.A., On methods of amalgamation, (), 39-48
[18] Huber, O., Non transitive multidimentional preferences: theoretical analysis of a model, Theory and decision, 10, 147-165, (1979)
[19] Hwang, C.L.; Yoon, K., Multiple attribute decision-making methods and applications, a state-of-the-art survey, (1981), Springer Berlin · Zbl 0453.90002
[20] Jacquet-Lagrèze, E., Binary preference indices: A new look of multicriteria aggregation procedures, European journal of operational research, 10, 25-32, (1982) · Zbl 0481.90003
[21] Keeney, R.L.; Raiffa, H., Decisions with multiple objectives, preferences and value tradeoffs, (1976), Wiley New York · Zbl 0488.90001
[22] Krantz, D.H.; Luce, R.D.; Suppes, P.; Tverky, A., ()
[23] Luce, R.D., Lexicographic tradeoff structures, Theory and decision, 9, 187-193, (1978) · Zbl 0398.90005
[24] May, K.O., Intransitivity, utility and the aggregation of preference patterns, Econometrica, 22, 1-13, (1954)
[25] Plott, C.R.; Little, J.T.; Parks, R.P., Individual choice when objects have ordinal properties, Review of economic studies, 42, 403-413, (1975) · Zbl 0326.90004
[26] Roy, B., Classement et choix en présence de points de vue multiples (la méthode {\scelectre}, RIRO 2^{e} année, 57-75, (1968)
[27] Roy, B., {\scelectre} III: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples, Cahiers du CERO, 20, 3-24, (1978) · Zbl 0377.90003
[28] Roy, B., Méthodologie multicritère d’aide à la Décision, (1985), Economica Paris
[29] Roy, B.; Bertier, P., La méthode {\scelectre} II: une application au media-planning, (), 291-302
[30] Roy, B.; Bouyssou, D., La notion de seuil de discrimination en analyse multicritère, (), forthcoming in INFOR
[31] Roy, B.; Boussou, D., Comparison of two decision aid models applied to a nuclear power plant siting example, European journal of operational research, 25, 2, 200-215, (1986)
[32] Siskos, J.; Wascher, G.; Winkels, H.M., A bibliography on outranking approaches (1966-1982), () · Zbl 0555.90095
[33] Scott, D., Measurement models and linear inequalities, Journal of mathematical psychology, 1, 233-247, (1964) · Zbl 0129.12102
[34] Tversky, A., Intransitivity of preferences, Psychological review, 76, 31-48, (1969)
[35] Tversky, A.; Krantz, D.H., The dimensional representation and the metric structure of similarity data, Journal of mathematical psychology, 7, 572-596, (1970) · Zbl 0205.49201
[36] Vansnick, J.C., Strength of preference, theoretical and practical aspects, () · Zbl 0571.90041
[37] Vansnick, J.C., On the problem of weights in multiple criteria decision-making (the noncompensatory approach), European journal of operational research, 24, 2, 228-294, (1986) · Zbl 0579.90059
[38] Zeleny, M., Multiple criteria decision-making, (1982), McGraw-Hill New York · Zbl 0588.90019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.