zbMATH — the first resource for mathematics

Spectral asymptotics of Laplace operators on surfaces with cusps. (English) Zbl 0849.35093
Let \(M\) be a compact perturbation of a surface with constant negative curvature, finite volume and \(k\) cusps, \(\varphi\) the determinant of the scattering matrix of the positive Laplace operator on \(M\), \(\{\lambda_j: j\in \mathbb{N}\}\) the sequence of eigenvalues, \[ N_d(T)= \sum_{\lambda_j< T^2} 1,\;N_c(T)\equiv - {1\over 4\pi} \int^T_{- T} {\varphi'\over \varphi}\Biggl({1\over 2}+ ir\Biggr) dr,\;N_p(T)= \sum_{\rho\in R, |\rho- {1\over 2}|< T} m(\rho), \] where \(R\) is the set of poles of \(\varphi\) and \(m(\rho)\) is the order of the pole \(\rho\).
Then \(N_d(T)+ N_c(T)= {|M|\over 4\pi} T^2- {k\over \pi} T\ln T+ O(T)\), \(N_c(T)- {1\over 2} N_p(T)= o(T^{{3\over 2}+ \varepsilon})\) for all \(\varepsilon> 0\) and \(N_c(T)- {1\over 2} N_p(T)= o(T^{1+ \varepsilon})\) for all \(\varepsilon> 0\) if \(|\text{Re } \rho|< C\) for all \(\rho\in \mathbb{R}\). If the Liouville measure of the periodic trajectories of the geodesic flow on \(M\) equals zero, then \(N_d(T)+ N_c(T)= {|M|\over 4\pi} T^2- {k\over \pi} T\ln T+ {k\over \pi} (1- \ln 2) T+ o(T)\).
Reviewer: G.Bottaro (Genova)

35P20 Asymptotic distributions of eigenvalues in context of PDEs
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
47F05 General theory of partial differential operators
58J05 Elliptic equations on manifolds, general theory
Full Text: DOI EuDML
[1] Agmon, S.: Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators. Arch. Ration. Mech. and Analysis28, 165-183 (1968) · Zbl 0159.15903
[2] van den Berg, M.: Dirichlet-Neumann bracketing for horn-shaped regions. J. Funct. Anal.104, 110-120 (1992) · Zbl 0763.35071
[3] Colin de Verdi?re, Y.: Pseudo-Laplacians II. Ann. Inst. Fourier33, 87-113 (1983) · Zbl 0496.58016
[4] Froese, R. and Zworski, M.: Finite volume surfaces with resonances far from the unitary axis. Int. Math. Res. Notes10, 275-277 (1993) · Zbl 0797.58016
[5] Lax, P., Phillips, R.: Scattering theory for automorphic functions. Princeton Univ. Press, 1976 · Zbl 0362.10022
[6] Levitan, B.M.: On the asymptotic behaviour of the spectral function and discrete spectrum of the Laplace operator on a fundamental domain of Lobachevsky’s plane. Rendiconti del Seminario Matematico e Fisiko di Milano52, 195-219 (1982) · Zbl 0588.35068
[7] M?ller, W.: Spectral theory for Riemannian manifolds with cusps and a related trace formula. Math. Nachr.111, 197-288 (1983) · Zbl 0529.58035
[8] M?ller, W.: Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math.109, 265-305 (1992) · Zbl 0772.58063
[9] Parnovski, L.B.: Asymptotics of Dirichlet spectrum on some class of noncompact domains. To appear in Math. Nachr. · Zbl 0829.35089
[10] Seeley, R.: An estimate near the boundary for the spectral function of the Laplace operator. Amer. J. of Math.102, 869-902 (1980) · Zbl 0447.35029
[11] Selberg, A.: Remarks on the distribution of poles of Eisenstein series. In: Gelbart S., Howe R., Sarnak P. (eds) Israel Math. Conf. Proc. vol. 3, part II. Festschrift in honor of I.I. Piatetski-Shapiro, pp. 251-278. Jerusalem: Weizman 1990
[12] Vassiliev, D.G.: Asymptotics of the spectrum of a boundary value problem. Transactions of the Moscow Mathematical Society,49, 173-245 (1986)
[13] Vassiliev, D.G.: Binomial asymptotics of the spectrum of a boundary-value problem. Funct. Anal. Appl.17 (4), 309-311 (1983) · Zbl 0583.35082
[14] Vodev, G.: Asymptotics on the number of scattering poles for degenerate perturbations of the Laplacian. Preprint · Zbl 0862.35082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.