Problèmes de prediction pour le processus de Wiener à deux paramétres. (French) Zbl 0591.60047

See the preview in Zbl 0578.60051.


60G60 Random fields
60J65 Brownian motion
60G25 Prediction theory (aspects of stochastic processes)


Zbl 0578.60051
Full Text: DOI


[1] Carraro, L.: Un théorème de prédiction pour le processus de Wiener à deux paramètres. C.R. Acad. Sci., Paris, à paraître · Zbl 0579.60041
[2] Czőrgő, M.; Révész, P., Strong approximations in probability and statistics (1981), New York: Academic Press, New York · Zbl 0539.60029
[3] Dym, H.; McKean, H. P., Gaussian processes, function theory and the inverse spectral problem (1976), New York: Academic Press, New York · Zbl 0327.60029
[4] Ehm, W., Sample function properties of multi-parameter stable processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., 56, 195-228 (1981) · Zbl 0471.60046
[5] Goldman, A., Estimations analytiques concernant le mouvement brownien fractionnaire à plusieurs paramètres, C.R. Acad. Sci. Paris, 298, 91-93 (1984) · Zbl 0557.60069
[6] Goldman, A., La mesure de Hausdorff des trajectoires du mouvement brownien à plusieurs paramètres, C.R. Acad. Sci., Paris, 300, 643-645 (1985) · Zbl 0584.60063
[7] Kahane, J.P.: Recent progress in Fourier analysis. Proceedings of the Seminar on Fourier analysis held in E.I. Escorial, Spain, June 30-July 5 (1983)
[8] McKean, H. P., Brownian motion with several-dimensional time, Theory Probab. Appl., 8, 335-354 (1963) · Zbl 0124.08702
[9] Orey, S.; Pruitt, W. E., Sample functions of the N-parameter Wiener process, Ann. Probab., 1, 138-163 (1973) · Zbl 0284.60036
[10] Pitt, L. D., Local time for gaussian vector fields, Indiana Univ. Math. J., 27, 309-330 (1978) · Zbl 0382.60055
[11] Schoenberg, I. J., On certain metric spaces arising from euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. Math., 38, 787-793 (1937) · JFM 63.0363.03
[12] Wong, E.; Zakai, M., Differentiations formulas for stochastic integrals in the plane, Stochastic Processes Appl., 6, 339-349 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.