×

Universal algebras. (English. Russian original) Zbl 0760.08001

J. Sov. Math. 57, No. 2, 2959-3009 (1991); translation from Itogi Nauki Tekh., Ser. Algebra Topol. Geom. 27, 45-124 (1989).
The survey is based on the material published in the Universal Algebra section of Referativnyĭ Zhurnal Matematika in the period from 1976 till 1988; only the results and the directions are included that were not covered by several similar surveys and are the most promising ones according to the author’s opinion. There are 69 references selected from almost two thousand. The survey is organized in the following sections:
Lattices of (quasi-) varieties; (quasi-) varieties satisfying finiteness conditions; Mal’tsev conditions; various properties of classes of algebras; congruences and relations on algebras; homomorphisms; basic constructions; subalgebra systems; clones of operations; interpolation and completeness; algebras of polynomials, affine algebras and algebras with large automorphism groups; extensions, solutions of systems of equations, equational compactness; computer universal algebra.

MSC:

08-02 Research exposition (monographs, survey articles) pertaining to general algebraic systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. A. Abashidze, ?Varieties of Magari algebras,? in: Logico-Methodological Research [in Russian], Tbilisi (1983), pp. 121?134.
[2] I. Abragan, ?Minimal sets of generators in unary algebras,? Mat. Cas.,25, No. 4, 305?317 (1975).
[3] L. A. Al’shanskii, ?Linear automata and triangular products,? Latv. Mat. Ezhegod. (Riga), No. 30, 98?109 (1986).
[4] V. S. Anashin, ?Solvable groups with operators and commutative rings having transitive polynomials,? Algebra Logika,21, No. 6, 627?646 (1982). · Zbl 0565.20009
[5] V. A. Artamonov, ?Universal algebras,? Itogi Nauki Tekhn., Ser. Algebra, Topologiya, Geometriya,14, 191?248 (1976).
[6] V. A. Artamonov, ?Algebras with proper subalgebras,? Mat. Sb.,104, No. 3, 428?459 (1977).
[7] V. A. Artamonov, ?Lattices of varieties of linear algebras,? Usp. Mat. Nauk.,33, No. 2, 135?167 (1978).
[8] A. V. Artamonov, ?Schreier varieties of n-groups and n-semigroups,? Tr. Semin. I. G. Petrovsk MGU, No. 5, 193?203 (1979).
[9] A. V. Artamonov, ?Minimal varieties of generalized semigroups, groups and rings,? Sib. Mat. Zh.,21, No. 3, 6?22 (1980).
[10] A. V. Artamanov, ?Structure of protective groups in products of varieties,? Tr. Semin. I. G. Petrovsk MGU, No. 8, 58?74 (1982).
[11] A. V. Artamanov, ?Lattices of varieties,? Uporyad. Mnozh. Reshet. (Saratov. Univ.), No. 7, 97?106 (1983).
[12] R. A. Bairamov and O. M. Mamedov, ??-subdirect representations in axiomatizable classes,? Dokl. Akad. Nauk AzSSR,36, No. 4, 3?7 (1980).
[13] R. A. Bairamov and O. M. Mamedov, ?Nonstandard subdirect representations in axiomatizable classes,? Sib. Mat. Zh.,25, No. 3, 14?29 (1984).
[14] R. A. Bairamov, A. A. Makhmudov, and R. B. Feizullaev, ?Finiteness conditions and operators in the theory of varieties,? Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekhn. Mat. N., No. 5, 93?98 (1977).
[15] O. V. Belegradek, ?Classes of algebras with inner maps,? in: Studies on Theoretical Programming [in Russian], Alma Ata (1981), pp. 3?10.
[16] O. V. Belegradek and N. I. Koveshnikova, ?Subalgebras of relatively finitely defined algebras,? in: Questions of Group Theory [in Russian], Kem. Gos. Univ., Kemerovo (1980), pp. 22?23.
[17] V. P. Belkin and V. A. Gorbunov, ?Filters of lattices of quasivarieties of algebraic systems,? Algebra Logika,14, No. 4, 373?392 (1975). · Zbl 0349.08002
[18] S. N. Boiko, ?Automorphisms of triangular products of biautomata,? in: Algebra and Discrete Mathematics: Theoretical Foundations of Mathematical Security of Computers [in Russian], Riga (1986), pp. 13?24.
[19] S. N. Boiko, ?Galois theory of data bases,? Dep. in VINITI, March 24, 1987, No. 2106-V87.
[20] A. M. Bochkin, ?Unars with separative monoid of endomorphisms,? Izv. Vuzov. Mat., No. 5, 71?74 (1983). · Zbl 0523.08005
[21] A. M. Bochkin, ?Unars with commutative monoid of endomorphisms,? in: Properties of Semi-groups [in Russian], Leningrad (1984), pp. 3?4. · Zbl 0563.08005
[22] S. D. Brodskii and S. R. Kogalovskii, ?Remarks on varieties of algebraic systems,? Acta Sci. Math.,43, Nos. 3?4 (1981).
[23] M. S. Burgin, ?Multiplication of varieties of linear ?-algebras,? Izv. Vuzov. Mat., No. 5, 3?14 (1976).
[24] M. S. Burgin, ?Representations of linear ?-algebras as products,? Izv. Vuzov. Mat., No. 10, 6?14 (1980).
[25] M. S. Burgin, ?Kurosh varieties linear over a field of ?-algebras,? in: Questions of Group Theory and Homological Algebra [in Russian], Yaroslavl’ (1981), pp. 17?27.
[26] M. S. Burgin, ?Representation of algebraic and topological constructions by generalized-connected relations,? in: Properties of Semigroups [in Russian], Leningrad (1984), pp. 15?25.
[27] M. S. Burgin, ?Approximation of linear algebras and groupoids,? in: Algebraic Systems with one Action and Relation [in Russian], Leningrad (1985), pp. 3?13.
[28] M. S. Burgin, ?Functorial operations in varieties of linear ?-algebras,? Polugrupp Prilozhen. (Saratov), No. 8, 9?20 (1987).
[29] M. I. Burtman, ?Composition of multiplaced linear maps,? Dep. VINITI, No. 23, 1983, No. 6221-83 Dep.
[30] M. I. Burtman, ?Dense imbeddings in a Menger algebra of linear maps,? Dep. in VINITI, Jan. 31, 1984, No. 563-84 Dep.
[31] M. I. Burtman, ?Congruences on a Menger algebra of linear maps,? Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekhn. Mat. N.,5, No. 3, 8?14 (1984). · Zbl 0561.20047
[32] Yu. M. Vazhenin, ?Critical theories,? Sib. Mat. Zh.,29, No. 1, 23?31 (1988). · Zbl 0655.03005
[33] I. I. Valutse, Mappings. Algebraic Aspects of the Theory [in Russian], Shtiintsa, Kishenev (1976).
[34] I. I. Valutse, Foundations of the Theory of Universal Algebras [in Russian], Kishinev Politekhn. Inst., Kishinev (1982).
[35] V. P. Belkin, ?Quasi-identities of some finite algebras,? Mat. Zametki,22, No. 3, 335?338 (1977). · Zbl 0362.08005
[36] B. M. Vernikov, ?Hereditarily self-dual varieties and quasivarieties,? Izv. Vuzov. Mat., No. 9, 25?29 (1984).
[37] B. M. Vernikov and M. V. Volkov, ?Complements in lattices of varieties and quasivarieties,? Izv. Vuzov. Mat., No. 11, 17?20 (1982). · Zbl 0512.08004
[38] F. A. Gadzhiev, ?Menger algebras,? Tr. Mat. Inst. Akad. Nauk SSSR,163, 78?80 (1984).
[39] A. A. Gvaramiya, ?Mal’tsev’s theorem on quasivarieties for multitype algebras,? in: Algebra and Discrete Mathematics [in Russian], Riga (1984), pp. 33?45.
[40] E. A. Gil’man, ?Lattice of universal classes of unars,? Dep. VINITI, Dec. 19, 1982, No. 6186-82 Dep.
[41] E. A. Gil’man, ?Lattices of subquasivarieties of locally finite quasivarieties of algebraic systems,? in: Ordered Sets and Algebras: Algebraic Applications of Lattice Theory [in Russian], Saratov (1982), pp. 22?32.
[42] E. A. Gil’man, ?Indecomposable elements of lattices of universal classes,? Izv. Vuzov. Mat., No. 12, 58?60 (1983).
[43] V. B. Gisin, ?Imbeddings in exact categories and characterization of prevarieties of universal algebras,? in: Current Algebra [in Russian], Leningrad (1977), pp. 86?89. · Zbl 0389.18007
[44] V. B. Gisin and M. Sh. Tsalenko, ?Algebraic theory of systems and its application,? in: Systems Research: Methodological Problems. Annual [in Russian], Moscow (1984), pp. 130?151.
[45] M. I. Gobechiya, ?Varieties of biautomata,? Tr. Tbilisi Univ.,225, 160?197 (1981). · Zbl 0495.68046
[46] M. I. Gobechiya, ?Indecomposable varieties of biautomata,? Soobshch. Akad. Nauk GSSR,119, No. 1, 37?39 (1985). · Zbl 0615.20050
[47] É. A. Golubov and M. I. Sapir, ?Finite approximability of some constructions of universal algebras,? Mat. Zap. Ural’sk Univ.,11, No. 1, 26?40 (1978).
[48] V. A. Gorbunov, ?Lattices of quasivarieties,? Algebra Logika,15, No. 4, 436?457 (1976). · Zbl 0369.06004
[49] V. A. Gorbunov, ?Quasi-identities of two-element algebras,? Algebra Logika,22, No. 2, 121?127 (1983). · Zbl 0535.08006
[50] V. A. Gorbunov, ?Characterization of residually small quasivarieties,? Dokl. Akad. Nauk SSSR,275, No. 2, 293?296 (1984). · Zbl 0588.08008
[51] V. A. Gorbunov, ?Axiomatizability of cueing classes,? Mat. Zametki,35, No. 5, 641?645 (1984). · Zbl 0559.08006
[52] V. A. Gorbunov, ?Cardinalities of subdirectly indecomposable systems in quasivarieties,? Algebra Logika,25, No. 1, 3?50 (1986). · Zbl 0602.08006
[53] V. A. Gorbunov and V. I. Tumanov, ?A class of lattices of quasivarieties,? Algebra Logika,19, No. 1, 59?80 (1980). · Zbl 0472.08011
[54] V. A. Gorbunov and V. I. Tumanov, ?Structure of lattices of quasivarieties,? Dokl. Akad. Nauk SSSR,254, No. 2, 272?275 (1980). · Zbl 0466.08004
[55] V. A. Gorbunov and V. I. Tumanov, ?Structure of lattices of quasivarieties,? Tr. Inst. Mat. Sib. Otdel. Akad. Nauk SSSR,2, 12?44 (1982). · Zbl 0523.08008
[56] O. M. Gornostaev, ?Quasivarieties generated by classes of models,? Dep. VINITI, April 1, 1985, No. 2206-85 Dep.
[57] R. Sh. Grigoliya, ?Free Magari algebras with a finite number of generators,? in: Logico-Methodological Studies [in Russian], Tbilisi (1983), pp. 135?149.
[58] R. Sh. Grigoliya, ?Free D*-algebras with finite number of generators. Projective D*-algebras,? in: Methodological Studies [in Russian], Tbilisi (1985), pp. 47?48.
[59] Ya. Demetrovich and I. A. Mal’tsev, ?Essentially minimal TC-clones on a three-element set,? MTA Szàmitàstechn. Autom. Kut. Intez. Közl., No. 31, 115?151 (1984).
[60] Ya. Demetrovich and L. Khanak, ?Finite algebras with one operation,? Algebra Logika,19, No. 6, 640?645 (1980). · Zbl 0489.08006
[61] V. M. Dzhabbaradze, ?Structure of varieties, quasivarieties, and prevarieties of universal algebras,? in: Special Questions of Algebra and Topology [in Russian], Baku (1980), pp. 46?55.
[62] V. M. Dzhabbaradze, ?Clones of polynomial functions of finite algebras from some varieties,? in: Materials of the Sixth Republican Conference of Young Scientists on Mathematics and Mechanics for the 40th Anniversary of Victory, Baku, May 6?8, 1985. Mat., Baku (1985), pp. 69?71.
[63] V. M. Dzhabbaradze, ?Recognition of functional completeness of finite algebras in varieties with congruence conditions,? Dep. AzNIINTI, No. 5, 1987, No. 900-Az87.
[64] D. P. Egorova, ?Structure of congruences of unars,? Dep. VINITI, Aug. 26, 1977, No. 3465-77 Dep.
[65] D. P. Egorova, V. K. Kartashov, and L. A. Skornyakov, ?Varieties of heterogeneous unars,? in: Algebraic Systems [in Russian], Ivanovo (1981), pp. 122?133. · Zbl 0528.08005
[66] G. I. Zhitomirskii, ?Extensions of universal algebras,? Teor. Polugrupp Prilozhen., (Saratov), No. 4, 19?40 (1978).
[67] V. V. Ignatov, ?Structure of convexors,? Dep. VINITI, Dec. 17, 1984, No. 8018-84 Dep.
[68] V. V. Ignatov, ?Quasivarieties of convexors,? Izv. Vuzov. Mat., No. 7, 12?14 (1985). · Zbl 0594.08007
[69] V. K. Kartashov, ?Quasivarieties of unars,? Mat. Zametki,27, No. 1, 7?20 (1980).
[70] V. K. Kartashov, ?Lattices of quasivarieties of unars,? Sib. Mat. Zh.,26, No. 3, 49?62 (1985). · Zbl 0584.08005
[71] E. B. Katsov, ?Categoricity of the theory of polygons? Usp. Mat. Nauk.,42, No. 3, 187 (1987). · Zbl 0654.03020
[72] R. T. Kel’tenova, ?Equational compactness of algebras of unary operations,? Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., No. 5, 82?84 (1975).
[73] S. R. Kogalovskii, ?Lattices of varieties of unary algebras,? Dep. VINITI, July 23, 1984, No. 5280-84 Dep.
[74] S. R. Kogalovskii and V. V. Soldatova, ?Lattices of congruences of countable algebras,? Dep. VINITI Jan. 29, 1982, No. 392-82 Dep.
[75] Yu. G. Korotenkov, ?Extensions and interlacings in classes of universal algebras,? Dep. VINITI April 26, 1976, No. 1413-76 Dep.
[76] Yu. G. Korotenkov, ?Products of varieties of algebras with permutable congruences,? Dep. VINITI March 15, 1988, No. 2048-V88.
[77] G. Ch. Kurinnoi, ?Unars with common congruences. I,? Dep. VINITI March 13, 1980, No. 957-80 Dep.
[78] G. Ch. Kurinnoi, ?Unars with common congruences. II,? Dep. VINITI March 13, 1980, No. 958-80 Dep.
[79] G. Ch. Kurinnoi, ?Definability of a unar by congruences,? Izv. Vuzov., Mat., No. 3, 76?78 (1981).
[80] V. B. Lender, ?Cueing equivalences on structures,? Mat. Zap. Ural’sk Univ.,9, No. 3, 60?72 (1975). · Zbl 0414.06004
[81] V. B. Lender, ?Prevarieties of structures which are not completely decomposable,? Sib. Mat. Zh.,18, No. 2, 348?357 (1977). · Zbl 0411.08003
[82] V. B. Lender, ?Normally solvable structures,? Izv. Vuzov. Mat., No. 12, 44?53 (1977).
[83] V. B. Lender, ?RNA-solvable structures,? Izv. Vuzov. Mat., No. 2, 69?72 (1979).
[84] F. F. Lysenko, ?Birkhoff R-classes of algebraic systems,? in: Current Algebra. Semi-groups. Constructions [in Russian], Leningrad (1981), pp. 23?30.
[85] I. A. Mal’tsev, ?Congruences on subalgebras of iterative Post algebras,? Diskretn. Analiz (Novosibirsk),29, 40?52 (1976).
[86] I. A. Mal’tsev, ?Invariants of quasicells of iterative Post algebras,? Sib. Mat. Zh.,26, No. 1, 220?223 (1985). · Zbl 0615.03032
[87] O. M. Mamedov, ?Generalized-indecomposable algebras and some types of varieties of algebras,? Dep. VINITI Nov. 23, 1976, No. 4045-76 Dep.
[88] O. M. Mamedov, ?Equational compactness of lattices and general algebras,? Dep. VINITI Jan. 30, 1981, No. 414-81 Dep.
[89] O. M. Mamedov, ?Filtered products of varieites: definition and some properties,? Dep. VINITI Dec. 6, 1985, No. 8378-V.
[90] O. M. Mamedov, ?Mal’tsev classes,? Dep. VINITI March 3, 1986, No. 2384-V.
[91] O. M. Mamedov, ?Clines of equationally compact universal algebras,? Dep. VINITI June 11, 1987, No. 4272-V37.
[92] O. M. Mamedov, ?Varieties of bounded distributive lattices have no covers in the lattice of interpretations,? Dep. VINITI April 1, 1988, No. 2490-V88.
[93] O. M. Mamedov, ?Simplicity of the filter of congruence-modularity in the lattice of interpretations,? Dep. VINITI May 25, 1988, No. 4007-V88.
[94] V. D. Martirosyan, ?Distributivity of the lattice of subvarieties of (?1,1)-algebras,? Dep. VINITI July 13, 1981, No. 3457-81 Dep.
[95] S. S. Marchernkov, ?Classification of algebras with alternating group of automorphism,? Dokl. Akad. Nauk SSSR,265, No. 3, 533?536 (1982).
[96] V. Yu. Meskhi, ?A discriminator of varieties of Heyting algebras with involution,? Algebra Logika,21, No. 5, 537?552 (1982). · Zbl 0521.06013
[97] V. Yu. Meskhi, ?Injectively complete varieties of Heyting algebras with regular involution,? in: Methods of Logical Research [in Russian], Tbilisi (1987), pp. 55?63.
[98] V. V. Mironov, ?Union of single-term varieties of algebras,? Mat. Zametki,35, No. 6, 789?794 (1984). · Zbl 0548.08004
[99] A. V. Mikhalev, ?Orthogonally complete multitype algebraic systems,? Dokl. Akad. Nauk SSSR,289, No. 6, 1304?1308 (1986).
[100] Yu. M. Movsisyan, ?Theory of universal algebras,? Izv. Akad. Nauk ArmSSR, Mat.,11, No. 6, 485?502 (1976).
[101] Yu. M. Movsisyan, ?Albert’s theorem in the category of binary algebras,? Dokl. Akad. Nauk ArmSSR,78, No. 1, 3?7 (1984). · Zbl 0543.08001
[102] Yu. M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities [in Russian], Izdat. Univ., Erevan (1986). · Zbl 0675.08001
[103] F. Kh. Muradov, ?Superassociative algebras of continuous maps,? Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekhn. Mat. N.,6, No. 5, 8?13 (1985).
[104] V. L. Murskii, ?Proportion of closed classes without a finite basis of identities,? Dokl. Akad. Nauk SSSR,293, No. 5, 1054?1057 (1987).
[105] I. N. Peranidze, ?Triangular multiplication in the theory of biautomata,? Tr. Tbilisi Univ.,225, 198?229 (1981).
[106] I. N. Peranidze, ?Construction of lacing of biautomata with representation,? Tr. Univ. Vychisl. Mat. Akad. Nauk GSSR,26, No. 2, 100?107 (1986).
[107] A. G. Pinus, Congruence-Modular Varieties of Algebras [in Russian], Izd. Univ., Irkutsk (1986). · Zbl 0714.08003
[108] A. G. Pinus, ?Quasisimple algebras,? in: Studies on Algebraic Systems with Respect to Properties of Their Subsystems [in Russian], Sverdlovsk (1987), pp. 108?118.
[109] A. G. Pinus, ?Congruence-distributive varieties of algebras,? Itogi Nauki Tekhn., Ser. Algebra, Topologiya, Geometriya,26, 45?83 (1988).
[110] B. I. Plotkin, ?Biautomata,? Tr. Tbilisi Univ.,225, 123?159 (1981).
[111] B. I. Plotkin, ?Models and data bases,? Tr. Vychisl. Tsentr. (VTs) Akad. Nauk GSSR,22, No. 2, 50?77 (1982).
[112] S. V. Polin, ?Identities in lattices of congruences of universal algebras,? Mat. Zametki,22, No. 3, 443?451 (1977).
[113] É. Redi, ?Polycategories of multiplaced relations and the polyringoid of partial multiplaced functions,? Uch. Zap. Tartus Univ.,366, 3?26 (1975).
[114] É. Redi, ?Representation of polyringoids,? Uch. Zap. Tartus Univ.,390, 43?55 (1976). · Zbl 0392.08003
[115] A. K. Rumyantsev, ?Independent basis for quasi-identities of a free Cantor algebra,? Mat. Sb.,98, No. 1, 130?142 (1975),.
[116] F. I. Salimov, ?Maximal subalgebras of algebras of distributions,? Izv. Vuzov. Mat., No. 7, 14?20 (1985).
[117] M. V. Sapir, ?Varieties with finite number of subquasivarieties,? Sib. Mat. Zh.,22, No. 6, 168?187 (1981). · Zbl 0491.08011
[118] S. V. Sizyi, ?Finitely approximable unars,? Mat. Zametki,43, No. 3, 401?406 (1988).
[119] A. N. Skiba, ?Finite subformations of varieties of algebraic systems,? Vopr. Algebry (Minsk), No. 2, 7?20 (1986).
[120] L. A. Skornyakov, ?Algebra of stochastic distributions,? Izv. Vuzov. Mat., No. 11, 59?67 (1982). · Zbl 0518.08011
[121] L. A. Skornyakov, ?Schreier and Hall varieties of unary algebras,? Vestn. MGU, Mat. Mekh., No. 3, 24?28 (1983). · Zbl 0524.08006
[122] A. K. Slipenko, ?Symmetric operatives of maps,? Ukr. Mat. Zh.,37, No. 3, 323?327 (1985). · Zbl 0588.08002
[123] D. M. Smirnov, ?Regularly definable varieties of algebras,? Algebra Logika,15, No. 3, 331?342 (1976). · Zbl 0361.08011
[124] D. M. Smirnov, ?Universal definability of Mal’tsev classes,? Algebra Logika (Novosibirsk),21, No. 6, 721?738 (1982).
[125] D. M. Smirnov, ?Mal’tsev conditions and representability of varieties,? Algebra Logika (Novosibirsk),22, No. 6, 693?706 (1983).
[126] D. M. Smirnov, ?Lattices of Mal’tsev theories,? Algebra Logika (Novosibirsk),23, No. 3, 296?304 (1984).
[127] D. M. Smirnov, ?Mal’tsev classes with a given property,? Algebra Logika (Novosibirsk),26, No. 2, 204?219 (1987).
[128] F. N. Sokhatskii, ?Positional algebras. Belosov algebras,? Mat. Issled. Kishinev, No. 95, 101?120 (1987).
[129] M. P. Tropin, ?Bases of finite distributive p-algebras,? Algebra Logika (Novosibirsk),26, No. 4, 456?480 (1987). · Zbl 0671.06006
[130] V. S. Trokhimenko, ?Menger algebras of relations,? Izv. Vuzov. Mat., No. 2, 87?95 (1978). · Zbl 0388.08002
[131] V. S. Trokhimenko, ?Theory of restrictive Menger algebras,? Ukr. Mat. Zh.,36, No. 1, 82?87 (1984). · Zbl 0543.20058
[132] V. I. Tumanov, ?Finite distributive lattices of quasivarieties,? Algebra Logika (Novosibirsk),22, No. 2, 168?181 (1983).
[133] Ordered Sets and Lattices [in Russian], Komensk. Univ., Bratislava (1985).
[134] R. B. Feizullaev, ?Algebras of polymorphisms of n-ary models,? Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekhn. Mat. N.,4, No. 1, 3?6 (1983).
[135] M. Ya. Finkel’shtein, ?Complexity of linear automata,? in: Abelian Groups and Modules [in Russian], Tomsk (1981), pp. 198?221.
[136] R. S. Florya, ?Minimal varieties of ?-groupoids,? Izv. Akad. Nauk MSSR, Ser. Fiz.-Tekhn. Mat. N., No. 1, 14?17 (1982). · Zbl 0537.08008
[137] V. Flyaisher, ??-rings over which all polygons are n-free? Uch. Zap. Tartus Univ.,390, 56?83 (1976).
[138] V. Flyaisher, ?Normal varieties of algebras,? Izv. Akad. Nauk ÉSSR, Fiz. Mat.,29, No. 1, 17?21 (1980).
[139] Yu. V. Khashina, ?Schreier varieties of n-semigroups,? Vestn. MGU, Mat. Mekh., No. 1, 17?2.1 (1984). · Zbl 0549.20057
[140] Yu. A. Khashina, ?Schreier varieties of (m, n)-rings,? Dep. VINITI Aug. 7, 1985, No. 5879-85 Dep.
[141] G. Chupona and S. Markovski, ?Discourse on universal algebra,? Godishen Zb. Prirodno-Mat. Fak. Univ. Skonje, A, Nos. 25?26, 15?34 (1975(1976)).
[142] M. E. Adams, ?Maximal subalgebras of Heyting algebras,? Proc. Edinburgh Math. Soc.,29, No. 3, 359?365 (1986). · Zbl 0578.06009
[143] M. E. Adams, ?Principal congruences in de Morgan algebras,? Proc. Edinburgh Math. Soc.,30, No. 3, 415?421 (1987). · Zbl 0595.06013
[144] M. E. Adams, V. Koubek, and J. Sichler, ?Homomorphisms of distributive p-algebras with countably many minimal prime ideals,? Bull. Austral. Math. Soc.,35, No. 3, 427?439 (1987). · Zbl 0605.06010
[145] M. E. Adams and H. A. Priestly, ?Kleene algebras are almost universal,? Bull. Austral. Math. Soc.,34, No. 3, 343?373 (1986). · Zbl 0583.06009
[146] M. E. Adams and H. A. Priestly, ?Morgan algebras are universal,? Discrete Math.,66, Nos. 1?2, 1?13 (1987). · Zbl 0618.06006
[147] H. Andréka, S. D. Comer, and I. Nemeti, ?Clones of operations on relations,? Lect. Notes Math.,1149, 17?21 (1985).
[148] H. Andréka and I. Németi, ?HSPK is equational class without the axiom of choice,? Algebra Univers.,13, No. 2, 163?166 (1981).
[149] H. Andréka and I. Németi, ?Importance of universal algebra for computer science,? in: Universal Algebra and Links Logic, Algebra, Combinatorics, and Comput. Sci., Berlin (1984), pp. 204?205. · Zbl 0548.68022
[150] M. A. Arbib, ?Free dynamics and algebraic semantics,? Lect. Notes Comput. Sci.,56, 212?227 (1977).
[151] C. J. Ash, ?Pseudovarieties, generalized varieties and similarly described classes,? J. Algebra,92, No. 1, 104?115 (1985). · Zbl 0548.08007
[152] K. A. Baker, ?Finite equational classes for finite algebras in a congruence-distributive equational class,? Adv. Math.,24, No. 3, 207?243 (1977). · Zbl 0356.08006
[153] K. A. Baker, G. F. McNulty, and H. Werner, ?The finitely based varieties of graph algebras,? Acta Sci. Math.,51, Nos. 1?2, 3?15 (1987). · Zbl 0629.08003
[154] K. A. Baker and A. F. Pixley, ?Polynomial interpolation and the Chinese remainder theorem for algebraic systems,? Math. Z.,143, No. 2, 165?174 (1975). · Zbl 0292.08004
[155] J. T. Baldwin and J. Berman, ?The number of subdirectly irreducible algebras in a variety,? Algebra Univers.,5, No. 3, 379?389 (1975). · Zbl 0348.08002
[156] J. T. Baldwin and J. Berman, ?Elementary classes of varieties,? Houston J. Math.,7, No. 4, 473?492 (1981). · Zbl 0487.08007
[157] J. T. Baldwin and J. Berman, ?Definable principal congruence relations: Kith and kin,? Acta Sci. Math.,44, Nos. 3?4, 255?270 (1982). · Zbl 0503.08003
[158] B. Banaschewski, ?On categories of algebras equivalent to a variety,? Algebra Univers.,16, No. 2, 264?267 (1983). · Zbl 0517.18010
[159] P. Bankston and R. Fox, ?On categories of algebras equivalent to a quasivariety,? Algebra Univers.,16, No. 2, 153?158 (1983). · Zbl 0517.18011
[160] W. Bartol, ?Subalgebra lattices of monounary algebras,? Algebra Univers.,12, No. 1, 66?69 (1981). · Zbl 0461.08006
[161] R. Beazer, ?The determination congruence on double p-algebras,? Algebra Univers.,6, No. 2, 121?129 (1976). · Zbl 0353.06002
[162] R. Beazer, ?Some remarks on distributive double p-algebras,? Algebra Univers.,8, No. 1, 5?14 (1978). · Zbl 0381.06020
[163] R. Beazer, ?Regular double p-algebras with Stone congruence lattices,? Algebra Univers.,9, No. 2, 238?243 (1979). · Zbl 0414.06010
[164] R. Beazer, ?Subdirectly irreducible double Heyting algebras,? Algebra Univers.,10, No. 2, 220?224 (1980). · Zbl 0431.06014
[165] R. Beazer, ?Congruence pairs of distributive double p-algebras with non-empty core,? Houston J. Math.,6, No. 4, 443?353 (1980). · Zbl 0464.06006
[166] R. Beazer, ?Finitely subdirectly irreducible algebras with pseudocomplementation,? Algebra Univers.,12, No. 3, 376?386 (1981). · Zbl 0466.06010
[167] R. Beazer, ?On congruence lattices of some p-algebras and double p-algebras,? Algebra Univers.,13, No. 3, 379?388 (1981). · Zbl 0475.06003
[168] R. Beazer, ?Affine complete double Stone algebras with bounded core,? Algebra Univers.,16, No. 2, 237?244 (1983). · Zbl 0518.06011
[169] R. Beazer, ?On some small varieties of distributive Ockham algebras,? Glasgow Math. J.,25, No. 2, 175?181 (1984). · Zbl 0539.06012
[170] R. Beazer, ?Injectives in some small varieties of Ockham algebras,? Glasgow Math. J.,25, No. 2, 183?191 (1984). · Zbl 0539.06013
[171] R. Beazer, ?Varieties of modal lattices,? Houston J. Math.,12, No. 3, 357?369 (1986). · Zbl 0611.06011
[172] C. Bergman, ?The amalgamation class of discriminator variety is finitely axiomatizable,? Lect. Notes Math.,1004, 1?9 (1983). · Zbl 0519.08008
[173] C. Bergman, ?Saturated algebras in filtral varieties,? Algebra Univers.,24, Nos. 1?2, 101?110 (1987). · Zbl 0613.08006
[174] G. M. Bergman, ?On the existence of subalgebras of direct products with prescribed d-fold projections,? Algebra Univers.,7, No. 3, 341?356 (1977). · Zbl 0327.08004
[175] J. Berman and W. J. Blok, ?Free spectra of nilpotent varieties,? Algebra Unives.,24, No. 3, 279?282 (1987). · Zbl 0647.08005
[176] J. Berman and G. Grätzer, ?Uniform representations of congruence schemes,? Pacific J. Math.,76, No. 2, 301?311 (1978). · Zbl 0435.08005
[177] J. Berman, G. Grätzer, and C. R. Platt, ?Extending algebras to model congruence schemes,? Can. J. Math.,38, No. 2, 257?276 (1986). · Zbl 0576.08002
[178] J. Berman and R. McKenzie, ?Clones satisfying the term conditions,? Discrete Math.,52, No. 1, 7?29 (1984). · Zbl 0547.08003
[179] C. Bernardi and G. Mazzanti, ?Different types of congruences in direct products,? J. Algebra,74, No. 1, 96?111 (1982). · Zbl 0479.08002
[180] R. Betti and S. Kasangian, ?Tree automata and enriched category theory,? Rend. Ist. Mat. Univ. Trieste,17, Nos. 1?2, 71?78 (1985). · Zbl 0614.68045
[181] M. Blattner and T. Head, ?Automata that recognize intersections of free submonoids,? Inform. Control,35, No. 3, 173?176 (1977). · Zbl 0375.94022
[182] W. J. Blok, ?2?0 varieties of Heyting algebras not generated by their finite members,? Algebra Univers.,7, No. 1, 115?117 (1977). · Zbl 0355.08002
[183] W. J. Blok and W. Dziobiak, ?On the lattice of quasivarieties of Sugihara algebras,? Stud. Log.,45, No. 3, 275?280 (1986). · Zbl 0616.06003
[184] W. J. Blok, P. Köhler, and D. Pigozzi, ?On the structure of varieties with equationally definable principal congruences. II,? Algebra Univers.,18, No. 3, 334?379 (1984). · Zbl 0558.08001
[185] W. J. Blok and D. Pigozzi, ?On the structure of varieties with equationally definable principal congruences. I,? Algebra Univers.,15, No. 2, 195?227 (1982). · Zbl 0512.08002
[186] W. J. Blok and D. Pigozzi, ?A little basis theorem for quasivarieties,? Algebra Univers.,22, No. 1, 1?13 (1986). · Zbl 0569.08004
[187] S. L. Bloom, ?Frontiers of one-letter languges,? Acta Cybern.,7, No. 1, 1?18 (1985).
[188] T. S. Blyth, A. S. Noor, and J. C. Varlet, ?Congruences on double MS-algebras,? Bull. Soc. Roy Sci. Liége,56, No. 2, 143?152 (1987).
[189] T. S. Blyth and J. C. Varlet, ?Subvarieties of the class of MS-algebras,? Proc. R. Soc. Edinburgh, A,95, Nos. 1?2, 157?169 (1983). · Zbl 0544.06011
[190] T. S. Blyth and J. C. Varlet, ?Congruences on MS-algebras,? Bull. Soc. Roy. Sci. Liége,53, No. 6, 341?362 (1984). · Zbl 0565.06011
[191] L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Akad.-Verlag., Berlin (1975).
[192] S. Bulman-Fleming and H. Werner, ?Equational compactness in quasiprimal varieties,? Algebra Univers.,7, No. 1, 33?46 (1977). · Zbl 0367.08006
[193] G. Burosch, J. Dassow, W. Harnau, and D. Lau, ?On subalgebras of an algebra of predicates,? Elektron. Informationsverarb. Kybern.,21, Nos. 1?2, 9?22 (1985). · Zbl 0578.03033
[194] St. Burris, ?On Baker’s finite basis theorem for congruence distributive varieties,? Proc. Amer. Math. Soc.,73, No. 2, 141?148 (1979). · Zbl 0401.08011
[195] St. Burris, ?Discriminator polynomials in arithmetical varieties,? Algebra Univers.,20, No. 3, 397?399 (1985). · Zbl 0593.08005
[196] St. Burris, ?Iterated discriminator varieties have undecidable theories,? Algebra Univers.,21, No. 1, 54?61 (1985). · Zbl 0593.08006
[197] St. Burris, ?Primitive positive clones which are endomorphism clones,? Algebra Univers.,24, Nos. 1?2, 41?49 (1987). · Zbl 0648.08003
[198] St. Burris and R. McKenzie, ?Decidability and Boolean representations. Part I: Decidable varieties with modular congruence lattices. Part II: Boolean representable varieties,? Memb. AMS, No. 246 (1981). · Zbl 0483.03019
[199] St. Burris and H. P. Sankappanavar, A Course in Universal Algebra. Grad. Text. Math.,78 (1981). · Zbl 0478.08001
[200] St. Burris and R. Willard, ?Finitely many primitive positive clones,? Proc. Amer. Math. Soc.,101, No. 3, 427?430 (1987). · Zbl 0656.08002
[201] I. Chajda, ?Systems of equations and tolerance relations,? Czech. Mat. J.,25, No. 2, 302?308 (1975). · Zbl 0312.08006
[202] I. Chajda, ?On the unique factorization problem,? Math. Slov. (CSSR),26, No. 3, 201?205 (1976). · Zbl 0375.08002
[203] I. Chajda, ?Direct decomposability of congruences in congruence-permutable varieties,? Math. Slov. (CSSR),32, No. 1, 93?86 (1982). · Zbl 0482.08008
[204] I. Chajda, ?Varieties with directly decomposable diagonal subalgebras,? Ann. Univ. Sci. Budapest, Sec. Math.,25, 193?201 (1982). · Zbl 0499.08004
[205] I. Chajda, ?Tolerance Hamiltonian varieties of algebras,? Acta Sci. Math.,44, Nos. 1?2, 13?16 (1982). · Zbl 0488.08001
[206] I. Chajda, ?Coherence, regularity and permutability of congruences,? Algebra Univers.,17, No. 2, 170?173 (1983). · Zbl 0537.08006
[207] I. Chajda, ?Varieties with directly decomposable subalgebras and homomorphisms,? Algebra Univers.,19, No. 1, 11?15 (1984). · Zbl 0545.08003
[208] I. Chajda, ?A Mal’cev condition for congruence principal permutable varieties,? Algebra Univers.,19, No. 3, 337?340 (1984). · Zbl 0552.08006
[209] I. Chajda, ?Regularity in arithmetical varieties,? Arch. Math. (CSSR),20, No. 4, 177?182 (1984). · Zbl 0573.08004
[210] I. Chajda, ?Varieties with tolerance and congruence extension property,? Arch. Math. (CSSR),21, No. 1, 5?12 (1985). · Zbl 0575.08001
[211] I. Chajda, ?Weakly regular algebras in varieties with principal compact congruences,? Czech. Math. J.,36, No. 1, 140?146 (1986). · Zbl 0598.08006
[212] I. Chajda, ?Relatives of 3-permutability and principal tolerance trivial varieties,? Ann. Univ. Sci. Budapest, Ser. Math.,28, 37?47 (1985(1986)). · Zbl 0603.08003
[213] I. Chajda, ?Tolerance and congruence conditions: connections and applications,? Mathematica (RSR),28, No. 1, 31?37 (1986). · Zbl 0612.08007
[214] I. Chajda, ?Congruence distributivity in varieties with constants,? Arch. Math. (CSSR),22, No. 3, 121?124 (1986). · Zbl 0615.08005
[215] I. Chajda, ?Directly decomposable congruences in varieties with nullary operations,? Math. Slov.,37, No. 1, 31?35 (1987). · Zbl 0624.08006
[216] I. Chajda, ?Algebras with principal tolerances,? Math. Slov.,37, No. 2, 169?172 (1987). · Zbl 0617.08012
[217] I. Chajda and J. Duda, ?Rees algebras and their varieties,? Publ. Math.,32, Nos. 1?2, 17?22 (1985). · Zbl 0582.08003
[218] I. Chajda and J. Rachunek, ?Relational characterizations of permutable varieties,? Czech. Math. J.,33, No. 4, 505?508 (1983).
[219] L. M. Chawla, ?Exchange groups of automorphisms of algebras,? Bull. Soc. Roy. Sci. Liége,44, Nos. 5?6, 315?321 (1975).
[220] M. R. Chiaro, ?Locally equational completeness of rings and semigroup,? Proc. Amer. Math. Soc.,66, No. 2, 189?193 (1977). · Zbl 0371.08004
[221] D. Clark, ??0-categoricity in infraprimal varieties,? Algebra Univers.,19, No. 2, 160?176 (1984). · Zbl 0597.08005
[222] C. Clark and P. H. Krauss, ?Para primal algebras,? Algebra Univers.,6, No. 2, 165?192 (1976). · Zbl 0368.08004
[223] D. Clark and P. H. Krauss, ?Varieties generated by para primal algebras,? Algebra Univers.,7, No. 1, 93?114 (1977). · Zbl 0435.08004
[224] F.-M. Clement, ?Systems dynamiques et fibrations concept d’opt-automate,? Cah. Topol. Geom. Differ.,23, No. 2, 193?196 (1982). · Zbl 0525.18006
[225] P. M. Cohn, Universal Algebra, Reidel Publ. Co., Dordrecht (1981).
[226] W. H. Cornish, ?The Chinese remainder theorem and sheaf representations,? Fund. Math.,96, No. 3, 177?187 (1977). · Zbl 0361.08015
[227] W. H. Cornish, ?3-permutability and quasicommutative BCK-algebras,? Math. Jap.,25, No. 4, 477?496 (1980). · Zbl 0444.03035
[228] W. H. Cornish, ?Two independent varieties of BCI-algebras,? Math. Semin. Notes Kobe Univ.,8, No. 2, 413?420 (1980). · Zbl 0472.08007
[229] W. H. Cornish, ?Varieties generated by finite BCK-algebras,? Bull. Austral. Math. Soc.,22, No. 3, 411?430 (1980). · Zbl 0439.08007
[230] W. H. Cornish, ?A large variety of BCK-algebras,? Math. Jap.,26, No. 3, 339?344 (1981). · Zbl 0463.03039
[231] W. H. Cornish, ?A ternary variety generated by lattices,? Comment. Math. Univ. Carol.,22, 22, No. 4, 773?784 (1981). · Zbl 0487.08009
[232] W. H. Cornish, ?Two-based definitions of bounded commutative BCK-algebras,? Math. Semin. Notes Kobe Univ.,11, No. 1, 9?15 (1983). · Zbl 0553.03044
[233] W. H. Cornish and P. H. Stewart, ?Direct and subdirect decompositions of universal algebras with Boolean orthogonality,? Acta Math. Acad. Sci. Hung.,38, Nos. 1?4, 9?14 (1981). · Zbl 0482.08001
[234] B. Csákány, ?Varieties in which congruences and subalgebras are amicable,? Acta Sci. Math.,37, Nos. 1?2, 25?31 (1975).
[235] B. Csákány, ?On affine spaces over prime fields,? Acta Sci. Math.,37, Nos. 1?2, 33?36 (1975).
[236] B. Csákány, ?Congruences and subalgebras,? Ann. Univ. Sci. Budapest, Sec. Math.,18, 37?44 (1975(1976)).
[237] B. Csákány, ?Homogeneous algebras,? in: Contrib. Gen. Algebra. Proc. Klagenfurt Conf., 1878, Klagenfurt (1979), pp. 77?81.
[238] B. Csákány, ?All minimal clones on the three-element set,? Acta Cybern.,6, No. 3, 227?238 (1983).
[239] B. Csákány, ?Completeness in coalgebras,? Acta Sci. Math.,48, Nos. 1?4, 75?84 (1985).
[240] B. Csákány and T. Gavalcova, ?Finite homogeneous algebras. I,? Acta Sci. Math.,42, Nos. 1?2, 57?65 (1980). · Zbl 0433.08005
[241] G. Czédli, ?A characterization for congruence semidistributivity,? Lect. Notes Math.,1004, 104?110 (1983).
[242] J. Czelakowski and W. Dziobak, ?Another proof that ISPr(K) is the least quasivariety containing K,? Stud. Log.,41, No. 4, 343?345 (1982). · Zbl 0542.08006
[243] B. Davey, ?A subdirect irreducible distributive double p-algebras,? Algebra Univer.,8, No. 1, 73?88 (1978). · Zbl 0381.06019
[244] B. Davey, ?On the lattice of subvarieties,? Houston J. Math.,5, No. 2, 183?192 (1979). · Zbl 0396.08008
[245] B. Davey and L. G. Kovacs, ?Absolute subretracts and weak injectives in congruence modular varieties,? Trans. Amer. Math. Soc.,297, No. 1, 181?196 (1986). · Zbl 0684.08002
[246] B. Davey, K. R. Miles, and V. J. Schumann, ?Quasi-identities Mal’cev conditions and congruence regularity,? Acta Sci. Math.,51, Nos. 1?2, 39?55 (1987). · Zbl 0629.08004
[247] B. Davey and H. Werner, ?Injectivity and Boolean powers,? Math. Z.,166, No. 3, 205?223 (1979). · Zbl 0402.08010
[248] B. Davey and H. Werner, ?Distributivity of coproducts over products,? Algebra Univers.,12, No. 3, 387?394 (1981). · Zbl 0472.08010
[249] A. Day, ?Splitting algebras and a weak notion of projectivity,? Algebra Univers.,5, No. 2, 153?162 (1977). · Zbl 0324.08004
[250] A. Day and R. Freese, ?A characterization of identities implying congruence-modularity. I,? Can. J. Math.,32, No. 5, 1140?1167 (1980). · Zbl 0414.08003
[251] J. Demétrovics and L. Hannak, ?On the number of functionally complete algebras,? in: Proc. 12-th Int. Symp. Multiple-Valued Log., Paris, May 25?27, 1982, New York (1982), pp. 329?330.
[252] J. Demétrovics and L. Hannak, ?The number of reducts of a preprimal algebra,? Algebra Univers.,16, No. 2, 178?185 (1983). · Zbl 0519.08005
[253] J. Demétrovics and I. A. Malcev, ?Essentially minimal TC-clones on three-element base set,? Math. Repts. Acad. Sci. Can.,8, No. 3, 191?196 (1986).
[254] J. Demétrovics and L. Rónyai, ?On free spectra of self-dual clones,? in: Math. Structures. Computational Math., Math. Modeling [in Russian], Vol. 2, Sofiya (1984), pp. 136?140.
[255] J. Demétrovics, L. Hannak, and L. Rónyai, ?On monotone clones,? MTA. Számitástechn. Autom. Kut. Intéz. Tanulm, No. 202, 39?62 (1987).
[256] M. Demlová, J. Demel, and V. Koubek, ?Simplicity of algebras requires to investigate almost all operations,? Comment. Math. Univ. Carol.,23, No. 2, 325?335 (1982). · Zbl 0518.08001
[257] K. Denecke, ?Schwarche Automorphismen präprimaler algebren, die arithmetische Varietäten erzeugen,? Rostok Math. Kolloq., No. 10, 23?36 (1978). · Zbl 0455.08006
[258] K. Denecke, ?Preprimal algebras,? Math. Res., No. 11 (1982).
[259] K. Denecke, ?Eine algebraische Charakterisierung einer Klasse präprimaler Algebren,? Rostok Math. Kolloq., No. 23, 43?53 (1983). · Zbl 0566.08004
[260] K. Denecke, ?Varieties generated by two-element majority algebras and their equivalences,? Wiss. Beitr. M.-Luther-Univ. Halle-Wittenberg, No. 40, 35?56 (1986).
[261] K. Denecke, ?Algebraische Klons,? in: Algebra und Gruppentheor. Beitr. Jahrestag., Siebenlen, 28 Okt.-1 Nov., 1985, Freiberg (1986), pp. 25?29.
[262] K. Denecke, ?Functional completeness in pseudocomplemented de Morgan algebras,? Wiss. Beitr. M.-Luther-Univ. Halle-Wittenberg, No. 46, 135?150 (1987). · Zbl 0612.08004
[263] K. Denecke, ?Squares of primal algebras,? Z. Math. Log. Grundl. Math.,33, No. 1, 69?77 (1987). · Zbl 0637.08001
[264] K. Denecke and D. Lau, ?Kongruenzen auf Klons und vollinvariante Kongruenzen relativ freier Algebren. II,? Rostok. Math. Kolloq., No. 29, 4?20 (1986). · Zbl 0609.08003
[265] K. Denecke, M. Reschke, and O. Luders, ?Kongruenzdistributivität, kongruenzvertausch-barkeit und kongruenzmodularität zweielementiger algebren,? J. Inf. Process and Cybern. EIK,24, Nos. 1?2, 65?78 (1988).
[266] P. G. Dixon, ?Classes of algebraic systems defined by universal horn sentences,? Algebra Univers.,7 No. 3, 315?339 (1977). · Zbl 0364.08004
[267] Long Van Do, ?Codes infinitaires et automatés non-ambigus,? Publ. Dep. Math., No. 2/B, 97?107 (1985). · Zbl 0603.68082
[268] P. Dömösi, ?On a problem concerning the products of automata,? Dep. Math. K. Marx Univ. Econ. Budapest [Publ.], No. 3, 113?120 (1983).
[269] D. Dorninger and D. Schweigert, ?Zur darstellung von polynomen auf de Morgan algebren,? Czech. Mat. J.,30, No. 1, 65?70 (1980). · Zbl 0436.06011
[270] H. Dra?kovi?ová, ?Mal’cev type conditions for two varieties,? Math. Slov. (CSSR),27, No. 2, 177?180 (1977).
[271] H. Dra?kovicová, ?Conditions for independence of varieties,? Math. Slov. (CSSR),27, No. 3, 303?305 (1977).
[272] K. Drbohlav, ?Remarks on tolerance algebras,? Acta Univ. Carol. Math. Phys.,22, No. 1, 11?16 (1981). · Zbl 0478.08004
[273] A. Dubinsky, ?Computations on arbitrary algebras,? Lect. Notes Comput. Sci.,37, 319?341 (1975). · Zbl 0331.02018
[274] J. Duda, ?A Mal’cev characterization of n-permutable varieties with directly decomposable congruences,? Algebra Univers.,16, No. 3, 269?274 (1983). · Zbl 0514.08001
[275] J. Duda, ?Regularity of algebras with applications to congruence class geometry,? Arch. Math.,19, No. 4, 199?208 (1983). · Zbl 0541.08002
[276] J. Duda, ?Mal’cev conditions for regular and weakly regular subalgebras of the square,? Acta Sci. Math.,46, No. 1, 29?34 (1983). · Zbl 0533.08002
[277] J. Duda, ?Congruences on products in varieties satisfying the CEP,? Math. Slov.,36, No. 2, 171?177 (1986). · Zbl 0598.08005
[278] J. Duda, ?3-permutable and directly decomposable congruences,? Glas. Math.,21, No. 1, 75?80 (1986). · Zbl 0601.08005
[279] J. Duda, ?Varieties having directly decomposable congruence classes,? ?as. P?stov. Mat.,111, No. 4, 394?403 (1986). · Zbl 0606.08001
[280] J. Duda, ?Arithmeticity at 0,? Czech. Math. J.,37, No. 2, 197?206 (1987).
[281] J. Dudek, ?On the variety V?(+, 0),? Math. Semin. Notes Kobe Univ.,10, No. 1, 9?15 (1982).
[282] J. Dudek, ?Polynomial characterization of some idempotent algebras,? Acta Sci. Math.,50, Nos. 1?2, 39?49 (1986). · Zbl 0616.08011
[283] J. Dudek, ?On the minimal extension of sequences,? Algebra Univers.,23, No. 3, 308?312 (1986). · Zbl 0627.08001
[284] J. Dudek and E. Graczynska, ?The lattice of varieties of algebras,? Bull. Acad. Pol. Ser. Sci. Math.,29, Nos. 7?8, 337?340 (1981). · Zbl 0482.08010
[285] J. Dudek and J. Plonka, ?On covering in lattice of varieties of algebras,? Bull. Pol. Acad. Sci. Math.,31, Nos. 1?2, 1?4 (1983).
[286] H. F. Duncan, ?Some equationally complete algebras,? Amer. Math. Mon.,84, No. 7, 544?548 (1977). · Zbl 0374.08009
[287] K. Dyrda, ?None of the varietyE n ,n?2 is locally finite,? Demonstr. Math.,20, Nos. 1?2, 215?219 (1987). · Zbl 0655.06013
[288] W. Dziobiak, ?A variety generated by a finite algebra with2 N subvarieties,? Algebra Univers.,13, No. 2, 148?156 (1981). · Zbl 0476.08006
[289] W. Dziobiak, ?On distributivity of the lattice of subvarieties of a variety of Heyting algebras (abstract),? Bull. Sec. Logic,12, No. 1, 37?40 (1983).
[290] W. Dziobiak, ?On subquasivariety lattices of semiprimal varieties,? Algebra Univers.,20, No. 1, 127?129 (1985). · Zbl 0561.08004
[291] W. Dziobiak, ?The subvariety lattice of the distributive double p-algebras,? Bull. Austral. Math. Soc.,31, No. 3, 377?387 (1985). · Zbl 0579.06012
[292] G. Eigenthaler, ?Einige bemerkungen über clones und interpolierbare funktionen auf universellen algebren,? Beitr. Algebra Geom.,15, 121?127 (1983). · Zbl 0506.08002
[293] G. Eigenthaler and J. Wiesenbaur, ?On the concept of length in the sense of Lausch-Nöbauer and its generalizations,? J. Austral. Math. Soc. A,24, No. 2, 162?169 (1977). · Zbl 0368.08008
[294] Sanaa El-Assar, ?Two notes on the congruence lattice of the p-algebras,? Acta Math. Univ. Comen., 46?47, 13?20 (1985). · Zbl 0609.06008
[295] Z. Ésik, ?On homeomorphic realization of monotone automata,? Dep. Math. K. Marx Univ. Econ. Budapest [Publ.], No. 3, 63?76 (1983).
[296] Z. Ésik, ?On isomorphic realization of automata with ?0-products,? Acta Cybern. (Magy),8, No. 2, 119?134 (1987). · Zbl 0635.68051
[297] Z. Ésik and J. Viragh, ?On products of automata with identity,? Acta Cybern. (Magy),7, No. 3, 299?311 (1986).
[298] T. Evans, ?An algebra has solvable word problem if and only if it is embeddable in a finitely generated simple algebra,? Algebra Univers.,8, No. 2, 197?204 (1978). · Zbl 0381.03029
[299] F. Fages, ?Associative-commutative unification,? Lect. Notes Comput. Sci.,170, 194?208 (1984). · Zbl 0547.03012
[300] I. Fleischer, ?Abstract characterization for the automorphism group acting on the subalgebra lattice,? Algebra Univers.,12, No. 2, 256?257 (1981). · Zbl 0458.08003
[301] R. Franci, ?Algebre a congruenze M-ideali,? Rend. Semin. Mat. Univ. Politecn. Torino,37, No. 2, 135?143 (1979).
[302] R. Freese, ?Subdirectly irreducible algebras in modular varieties,? Lect. Notes Math.,1004, 142?152 (1983). · Zbl 0525.08007
[303] R. Freese and R. McKenzie, ?Residually small varieties with modular congruence lattices,? Trans. Amer. Math. Soc.,284, No. 2, 419?430 (1981). · Zbl 0472.08008
[304] E. Fried, ?On the behaviour of congruence-functors,? Algebra Univers.,24, Nos. 1?2, 188?191 (1987). · Zbl 0645.08005
[305] E. Fried and G. Grätzer, ?On automorphisms of the subalgebra lattice indexed by automorphisms of the algebra,? Acta Sci. Math.,40, Nos. 1?2, 49?52 (1978). · Zbl 0389.06007
[306] E. Fried and G. Grätzer, ?Classes of congruence lattices of filtral varieties,? Stud. Sci. Math. Hung.,19, Nos. 2?4, 259?264 (1984). · Zbl 0614.08007
[307] E. Fried, G. Grätzer, and R. Quackenbush, ?Uniform congruence scheme,? Algebra Univers.,10, No. 2, 176?188 (1980). · Zbl 0431.08002
[308] E. Fried, H. K. Kaiser, and L. Marki, ?An elementary approach to polynomial interpolation in universal algebras,? Algebra Univers.,15, No. 1, 40?57 (1982). · Zbl 0518.08003
[309] E. Fried and E. W. Kiss, ?Connections between congruence-lattices and polynomial properties,? Algebra Univers.,17, No. 3, 227?262 (1983). · Zbl 0534.08004
[310] E. Fried and A. F. Pixley, ?The dual discriminator function in universal algebra,? Acta Sci. Math.,41, Nos. 1?2, 83?100 (1979). · Zbl 0395.08001
[311] T. Fujiwara, ?Algebraically closed algebraic extensions in universal classes,? in: Proc. Second Symp. Semigroups, Tokyo (1978), pp. 55?67. · Zbl 0408.03022
[312] O. C. Garcia and W. Taylor, ?The lattice of interpretability types of varieties,? Mem. AMS,50, No. 3?5 (1984). · Zbl 0559.08003
[313] F. Gécseg, ?On v1-products of commutative automata,? Acta Cybern.,7, No. 1, 55?59 (1985).
[314] F. Gécseg, Products of Automata, Akad. Verl., Berlin (1986).
[315] F. Gécseg and B. Imreh, ?On ?1-product of tree automata,? Acta Cybern. (Magy),8, No. 2, 135?141 (1987). · Zbl 0633.68048
[316] G. Gerla and R. Tortora, ?Normalization of fuzzy algebras,? Fuzzy Sets Syst.,17, No. 1, 73?82 (1985). · Zbl 0589.08003
[317] H. Gerstmann, ?Über die schwache distributivität des Verbandes der subalgebren idempotenter algebren,? in: Contrib. Gen. Algebra. 2. Proc. Klagenfurt Conf., June 10?13, 1982, Wien; Stuttgard 81983), pp. 123?131. · Zbl 0529.08002
[318] St. Givant, ?Union decompositions and universal classes categorical in power,? Algebra Univers.,10, No. 2, 155?175 (1980). · Zbl 0433.03016
[319] St. Givant, ?The number of non-isomorphic denumerable models of certain Horn classes,? Algebra Univers.,13, No. 1, 56?68 (1981). · Zbl 0497.03026
[320] K. Glazek, ?Some old and new problems in the independence theory,? Colloq. Math.,42, 127?189 (1979). · Zbl 0432.08001
[321] G. Glazek, ?Weak homomorphisms of general algebras and related topics,? Math. Semin. Notes Kobe Univ.,8, No. 1, 1?36 (1980). · Zbl 0435.08002
[322] K. Glazek and T. Katri?ák, ?Weak homomorphisms of distributive p-algebras,? in: Univers. Algebra and Appl. Pap. Stefan Banach Int. Math. Cent. Semestr., Feb. 15-June 9, 1978, Warszawa (1982), pp. 383?390.
[323] K. Glazek and J. Michalski, ?Weak homomorphisms of general algebras,? Rocz. Pol. Tow. Mat., Ser. 19, No. 2, 211?228 (1977). · Zbl 0381.08002
[324] G. Gnani, ?Proprieta topologiche delle classi filtrali,? Boll. Unione Mat. Ital. B.,17, No. 3, 1420?1429 (1980). · Zbl 0448.08004
[325] M. S. Goldberg, ?Distributive Ockham algebras: free algebras and injectivity,? Bull. Austral. Math. Soc.,24, No. 2, 161?203 (1981). · Zbl 0477.06010
[326] K. Golema-Hartman, ?Minimal algebras in some class of algberas,? Colloq. Math.,36, No. 2, 187?193 (1976). · Zbl 0355.08007
[327] P. Goralcik, A. Goralcikova, V. Koubek, and V. Rödl, ?Fast recognition of rings and lattices,? Lect. Notes Comput. Sci.,117, 137?145 (1981). · Zbl 0466.68035
[328] M. Gould, ?Endomorphism and automorphism structure of direct squares of universal algebras,? Pacific J. Math.,59, No. 1, 69?84 (1975). · Zbl 0308.08001
[329] E. Graczy?ska, ?On the sums of double systems of some algebras. I,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 5, 509?513 (1975).
[330] E. Graczy?ska, ?On the sums of double systems of some universal algebras. II,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 10, 1055?1058 (1975(1976)).
[331] E. Graczy?ska, ?On normal identities,? Bull. Acad. Pol. Sci. Ser. Sci. Math.,30, Nos. 9?10, 403?405 (1982).
[332] E. Graczy?ska, ?On regular identities,? Algebra Univers.,17, No. 3, 369?375 (1983). · Zbl 0542.08003
[333] E. Graczy?ska, ?On bases for normal identities,? Stud. Sci. Math. Hung.,19, Nos. 2?4, 317?320 (1984).
[334] E. Graczy?ska, ?The word problem for regular identities,? Wiss. Beitr. M.-Luther-Univ. Halle-Wittenberg, M, No. 46, 41?49 (1987). · Zbl 0615.08003
[335] E. Graczy?ska, ?Connections between identities and hyperidentities,? Bull. Sec. Log.,17, No. 1, 34?41 (1988).
[336] E. Graczy?ska and F. Pastijn, ?Proofs of regular identities,? Houston J. Math.,8, No. 1, 61?67 (1982). · Zbl 0501.08004
[337] E. Graczy?ska and F. Pastijn, ?A generalization of Plonka sums,? Fund. Math.,120, No. 1, 53?62 (1984).
[338] E. Graczy?ska and A. Wronski, ?On weak Agassiz systems of algebras,? Colloq. Math.,40, No. 1, 9?12 (1978).
[339] E. Graczy?ska and A. Wronski, ?On normal Agassiz systems of algebras,? Colloq. Math.,40, No. 1, 1?8 (1978).
[340] G. Grätzer, Universal algebra (2nd edition), Springer, New York (1979).
[341] G. Grätzer, ?Universal algebra and lattice theory: a story and three research problems,? in: Universal Algebra and Links Logic, Algebra, Combinatorics and Comput. Sci., Berlin (1984), pp. 1?13.
[342] P. A. Grossman, ?Local polynomial functions on semilattices,? J. Algebra,69, No. 2, 281?286 (1981). · Zbl 0455.08004
[343] P. A. Grossman, ?Polynomial interpolation on univeral algebras,? Bull. Austra. Math. Soc.,27, No. 2, 315?317 (1983). · Zbl 0501.08002
[344] J. W. Grzymala-Busse, ?On the set of all automata with the same monoid of endomorphisms,? Lect. Notes Comput. Sci.,32, 246?251 (1975).
[345] H. P. Gumm, ?Über die Lösungsmengen von Gleichungssystemen über allgemeinen Algebren,? Math. Z.,162, No. 1, 51?62 (1978). · Zbl 0369.08001
[346] H. P. Gumm, ?Algebras in permutable varieties; geometrical properties of affine algebras,? Algebra Univers.,9, No. 1, 8?34 (1979). · Zbl 0414.08002
[347] W. Guz, ?Fuzzy ?-algebras of physics,? Int. J. Theor. Phys.,24, No. 5, 481?493 (1985). · Zbl 0575.46052
[348] L. Haddad and I. G. Rosenberg, ?An interval of finite clones isomorphic to R(N),? Math. Repts. Acad. Sci. Can.,8, No. 6, 375?379 (1986). · Zbl 0654.06005
[349] J. Hagemann and Ch. Herrmann, ?A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity,? Arc. Math.,32, No. 3, 234?245 (1979). · Zbl 0419.08001
[350] Cs. Hatvany, ?Direct decomposability for algebras,? Lucr. Semin. Mat. Si. Fiz. Inst. Politehn. Timisoara, Mai, 49?50 (1985). · Zbl 0624.08005
[351] T. Hecht and T. Katrinak, ?Principal congruence of p-algebras and double p-algebras,? Proc. Amer. Math. Soc.,58, 25?31 (1976). · Zbl 0352.06006
[352] Cr. Herrmann, ?Affine algebras in congruence modular varieties,? Acta Sci. Math.,41, Nos. 1?2, 119?125 (1979). · Zbl 0408.08003
[353] A. W. Higgins, ?A prepresentation theorem for weak automorphisms of a universal algebra,? Algebra Univers.,20, No. 2, 179?193 (1985). · Zbl 0568.08004
[354] H.-J. Hoehnke, ?Subfunctors associated with quasivarieties,? Abh. Akad. Wiss. DDR. ABt. Math. Naturwiss., Tehn., No. 2, 81?84 (1984). · Zbl 0561.08003
[355] U. Höhle, ?3001-01-fuzzy topologies on algebraic structures,? J. Math. Anal. Appl.,108, No. 1, 113?150 (1985). · Zbl 0602.54006
[356] H. Hule, ?Über die Eindeutigkeit der Lösungen algebraischer Gleichungssysteme,? J. Reine Angew. Math.,282, 157?161 (1976). · Zbl 0326.08010
[357] H. Hule, ?Relations between the amalgamation property and algebraic equations,? J. Austral. Math. Soc. A,25, No. 3, 257?263 (1978). · Zbl 0405.08002
[358] H. Hule, ?Solutionally complete varieties,? J. Austral. Math. Ser. A,28, No. 1, 82?86 (1979). · Zbl 0419.08007
[359] H. Hule and W. B. Müller, ?On the compatibility of algebraic equations with extensions,? J. Austral. Math. Soc.,21, No. 3, 381?383 (1976). · Zbl 0333.08005
[360] H. Hule and W. Nöbauer, ?Local polynomial functions on universal algebras,? An. Acad. Brasil. Cienc.,49, No. 3, 365?372 (1977).
[361] P. M. Idziak, ?On varieties of BCK-algebras,? Math. Jap.,28, No. 1, 157?162 (1983). · Zbl 0518.06015
[362] P. M. Idziak, ?Generalized complex algebras and regular identities,? Bull. Sec. Logic,14, No. 2, 84?90 (1985). · Zbl 0625.08007
[363] Th. Ihringer, ?The congruence lattices of finite algebras: the characterization problem and the role of binary operations,? Algebra-Ber.,13, No. 53, 1?39 (1986). · Zbl 0582.08001
[364] B. Imreh, ?On finite definite automata,? Acta Cybern.,7, No. 1, 61?65 (1985). · Zbl 0561.68043
[365] K. Iseki, ?A note on the variety of BCI-algebras of the type (1, 0, 0, 0),? Math. Semin. Notes Kobe Univ.,8, No. 3, 509?511 (1980). · Zbl 0472.03055
[366] A. A. Iskander, ?Extensions of algebraic systems,? Trans. Amer. Math. Soc.,281, No. 1, 309?327 (1984). · Zbl 0537.08005
[367] M. Istinger and H. K. Kaiser, ?A characterization of polynomially complete algebras,?56, No. 1, 103?110 (1979). · Zbl 0396.08006
[368] M. Istinger, H. K. Kaiser, and A. F. Pixley, ?Interpolation in congruence permutable algebras,? Colloq. Math.,42, 229?239 (1979). · Zbl 0438.08002
[369] D. Jakubiková, ?Systems of unary algebras with common endomorphisms. I,? Czech. Mat. J.,29, No. 3, 406?420 (1979).
[370] D. Jakubiková, ?Systems of unary algebras with common endomorphisms. II,? Czech. Mat. J.,29, No. 3, 421?429 (1979).
[371] D. Jakubiková-Studenovska, ?On weakly rigid monounary algebras,? Math. Slov. (CSSR),30, No. 2, 197?206 (1980). · Zbl 0439.08003
[372] D. Jakubiková-Studenovska, ?On congruence relations of monounary algebras. I,? Czech. Math. J.,32, No. 3, 437?459 (1982). · Zbl 0509.08003
[373] J. Je?ek, ?EDZ varieties: the Schreier property and epimorphisms onto,? Comment. Math. Univ. Carol.,17, No. 2, 281?290 (1976).
[374] J. Je?ek, ?Varieites of algebras with equationally defined zeros,? Czech. Mat. J.,27, No. 3, 394?414 (1977).
[375] J. Je?ek, ?Terms and semiterms,? Comment. Math. Univ. Carol.,20, No. 3, 447?460 (1979).
[376] J. Je?ek, ?A note on isomorphic varieties,? Comment. Math. Univ. Carol.,23, No. 3, 579?588 (1982).
[377] J. Je?ek, ?On join-irreducible equational theories,? Lect. Notes Math.,1004, 159?165 (1983).
[378] J. Je?ek, ?Minimal bounded varieties,? Comment. Math. Univ. Carol.,29, No. 2, 261?265 (1988).
[379] J. Je?ek and T. Kepka, ?Atoms in the lattice of varieties of distributive groupoids,? in: Lattice Theory. Proc. Colloq. Szeged, 1974, Amsterdam (1976), pp. 185?194.
[380] Hao Jiang, ?A theorem on the estimation of the number of subalgebras in a finite BCK-algebra,? J. Hangzhou Univ. Natur. Sci. Ed.,13, No. 1, 6?11 (1986). · Zbl 0595.03064
[381] B. Jonsson, ?Varieties of algebras and their congruence varieties,? Proc. Int. Congr. Math. Vancouver, 1974, Vol. 1 (1975), pp. 315?320. · Zbl 0353.08001
[382] B. Jonsson, ?On finitely based varieties of algebras,? Colloq. Math.,42, 255?261 (1979). · Zbl 0427.08003
[383] B. Jonsson, ?Congruence varieties,? Algebra Univers.,10, No. 3, 355?394 (1980). · Zbl 0438.08003
[384] K. Kaarli and A. F. Pixley, ?Affine complete varieties,? Algebra Univers.,24, Nos. 1?2, 74?90 (1987). · Zbl 0641.08007
[385] M. A. Kaaz, ?Concerning a quantum-like uncertainty relation or pairs of complementary fuzzy sets,? J. Math. Anal. Appl.,121, No. 1, 273?303 (1987). · Zbl 0627.03007
[386] J. K. Kabzi?ski, ?Quasivarieties for BCK-logic,? Bull. Sec. Logic,12, No. 3, 130?133 (1983).
[387] Hans K. Kaiser, ?Über lokal polynomvollständige universale Algebren,? Abh. Math. Semin. Univ. Hamburg,43, 158?165 (1975). · Zbl 0308.08002
[388] Hans K. Kaiser, ?Contributions to the theory of polynomially complete algebras,? An. Acad. Brasil. Cienc,48, No. 1, 1?5 (1976). · Zbl 0355.08001
[389] Hans K. Kaiser, ?Über kompatible funktionen in universalen Algebren,? Acta Math. Acad. Sci. Hung.,30, Nos. 1?2, 105?111 (1977). · Zbl 0367.08010
[390] Hans K. Kaiser, ?Interpolation in universal algebra,? in: Universal Algebra and Links Logic, Algebra, Combinatorics and Comput. Sci., Berlin (1984), pp. 29?40.
[391] Hans K. Kaiser and R. Lidl, ?Erweiterungs- und Redeipolynomvollständigkeit universaler Algebren,? Acta Math. Acad. Sci. Hung.,26, Nos. 3?4, 251?257 (1975). · Zbl 0354.08012
[392] Hans K. Kaiser and L. Márki, ?Remarks on a paper of L. Szabo and A. Szendrej,? Acta Sci. Math.,42, Nos. 1?2, 95?98 (1980).
[393] Hans K. Kaiser and W. Nöbauer, ?Über interpolierbare Funktionene auf universalen Algebren,? Beitr. Algebra Geom.,12, 51?55 (1982). · Zbl 0479.08005
[394] T. Katrinak, ?Essential extensions and injective hulls of double Stone algebras,? Algebra Univers.,7, No. 1, 5?23 (1977). · Zbl 0358.06028
[395] T. Katrinak, ?Congruence lattices of distributive p-algebras,? Algebra Univers.,7, No. 2, 265?271 (1977). · Zbl 0358.06026
[396] T. Katrinak, ?Congruence pairs on p-algebras with a modular frame,? Algebra Univers.,8, No. 2, 205?220 (1978). · Zbl 0381.06017
[397] T. Katrinak, ?Subdirectly irreducible p-algebras,? Algebra Univers.,9, No. 1, 116?126 (1979). · Zbl 0402.06003
[398] T. Katrinak, ?Subdirectly irreducible double p-algebras of finite range,? Algebra Univers.,9, No. 2, 135?141 (1979). · Zbl 0416.06013
[399] T. Katrinak, ?Subdirectly irreducible distributive double p-algebras,? Algebra Univers.,10, No. 2, 195?219 (1980). · Zbl 0431.06013
[400] T. Katrinak, ?Subdirectly irreducible double p-algebras of finite length,? Houston J. Math,6, No. 4, 523?541 (1980). · Zbl 0431.06013
[401] T. Katrinak, ?Splitting p-algebras,? Algebra Univers.,18, No. 2, 199?224 (1984). · Zbl 0547.06007
[402] T. Katrinak and S. El-Assar, ?Algebras with Boolean and Stone congruence lattices,? Acta Math. Hung.,48, Nos. 3?4, 301?316 (1986). · Zbl 0618.08001
[403] J. F. Kennison and C. S. Ledbetter, ?Sheaf representations and the Dedekind reals,? Lect. Notes Math.,753, 500?513 (1970). · Zbl 0419.18002
[404] M. Kilp and U. Knauer, ?Characterization of monoids by properties of regular acts,? J. Pure Appl. Algebra,46, Nos. 2?3, 217?231 (1987). · Zbl 0619.20048
[405] M. Klip, U. Knauer, A. V. Michalev, and L. A. Skornjakov, ?Acta over monoids,? Univ. Oldenburg, 1982.
[406] A. Kisieiewicz, ?The pn-sequences of idempotent algebras are strictly increasing,? Algebra Univers.,13, No. 2, 233?250 (1981). · Zbl 0476.08005
[407] A. Kisieiewicz, ?Minimal extensions of minimal representable sequences,? Algebra Univers.,22, Nos. 2?3, 244?252 (1986). · Zbl 0605.08001
[408] E. W. Kiss, ?Each Hamiltonian variety has the congruence extension property,? Algebra Univers.,12, No. 3, 395?398 (1981). · Zbl 0422.08003
[409] E. W. Kiss, ?Finitely Boolean representable varieties,? Proc. Amer. Math. Soc.,89, No. 4, 579?582 (1983).
[410] E. W. Kiss, ?Term functions and subalgebras,? Acta Sci. Math.,47, Nos. 3?4, 303?306 (1984).
[411] E. W. Kiss, ?Injectivity and related concepts in modular varieties. I. Two commutator properties,? Bull. Austral. Math. Soc.,32, No. 1, 33?44 (1985). · Zbl 0584.08003
[412] E. W. Kiss, ?Injectivity and related concepts in modular varieties. II. The congruence extension property,? Bull. Austral. Math. Soc.,32, No. 1, 45?53 (1985). · Zbl 0584.08004
[413] E. W. Kiss, ?Definable principal congruences in congruence distributive varieties,? Algebra Univers.,21, Nos. 2?3, 213?224 (1985). · Zbl 0554.08006
[414] N. Knarr and C. Wiegand, ?Ein Kriterium für Topologische Ternärkörper,? Arch. Math.,46, No. 4, 368?370 (1986). · Zbl 0604.51010
[415] L. Kluktovits, ?Hamiltonian varieties of univeral algebras,? Acta Sci. Math.,37, Nos. 1?2, 11?15 (1975).
[416] R. A. Knoebel, ?Further conclusions on functional completeness,? Fund. Math.,99, No. 2, 93?112 (1978).
[417] R. A. Knoebel, ?The equational classes generated by single functionally precomplete algebras,? Mem. AMS,57, No. 332 (1985). · Zbl 0584.08002
[418] E. Knuth, ?A foundation for conceptual data structures by cylindrical and partial algebras,? Period. Math. Hung.,18, No. 4, 295?316 (1987). · Zbl 0629.68093
[419] K. M. Koh, ?Idempotent algebras with three essentially binary polynomials,? Algebra Univers.,10, No. 2, 232?246 (1980). · Zbl 0429.08001
[420] P. Köhler, ?Varieties of Brouwerian algebras,? Mitt. Mat. Sem. Geissen, No. 116 (1975).
[421] J. Kollar, ?Automorphism groups of subalgebras; a concrete characterization,? Acta Sci. Math.,40, Nos. 3?4, 291?295 (1978). · Zbl 0354.08004
[422] J. Kollar, ?Injectivity and congruence extension property in congruence distributive equational classes,? Algebra Univers.,10, No. 1, 21?26 (1980). · Zbl 0436.08003
[423] Y. Komori, ?The class of BCC-algebras is not a variety,? Math. Jap.,29, No. 3, 391?394 (1984). · Zbl 0553.03046
[424] R. König, ?Beiträge zur algebraischen Theorie der formalen Sprachen,? Arbetsber. Inst. Math. Masch. Datenverarb.,16, No. 2 (1983).
[425] O. Kope?ek, ?Homomorphisms of machines. (Part I),? Arch. Mat.,14, No. 1, 45?50 (1978).
[426] O. Kope?ek, ?|End A|=|Con A|=|Sub A|=2|A| for any uncountable 1-unary algebra A,? Algebra Univers.,16, No. 3, 312?317 (1983). · Zbl 0525.08005
[427] V. Koubek, ?Subalgebra lattices, simplicity and rigidity,? Acta Sci. Math.,47, Nos. 1?2, 71?83 (1984). · Zbl 0565.08001
[428] V. Koubek and V. Rödl, ?On hereditary rigid algebras,? Algebra Univers.,22, Nos. 2?3, 120?141 (1986). · Zbl 0604.08001
[429] V. Koubek and J. Sichler, ?Universal varieties of distributive double p-algebras,? Glasgow Math. J.,26, No. 2, 121?131 (1985). · Zbl 0574.06009
[430] G. Kowol, ?Embeddings of universal algebras into simple ones,? Algebra Univers.,19, No. 1, 83?91 (1984). · Zbl 0546.08002
[431] M. Kozák, ?Finiteness conditions on EDZ-varieties,? Comment. Math. Univ. Carol.17, No. 3, 461?472 (1986).
[432] P. H. Krauss, ?Direct factor varieties,? Algebra Univers.,17, No. 3, 329?338 (1983). · Zbl 0535.08004
[433] P. H. Krauss, ?Mysterious varieties,? Algebra Univers.,19, No. 2, 243?249 (1984). · Zbl 0548.08002
[434] P. H. Krauss and D. M. Clark, ?Global subdirect products,? Mem. AMS, No. 210 (1979). · Zbl 0421.08001
[435] J. Kuras, ?Agassiz bands of algebras,? Bull. Pol. Acad. Sci. Math.,32, Nos. 11?12, 643?645 (1984). · Zbl 0596.08008
[436] J. Kuras, ?Even equations and Agassiz sums,? Colloq. Math.,53, No. 1, 9?16 (1987). · Zbl 0629.08006
[437] A. Kurka, ?Equationally compact algebras with bases of different cardinalities,? Algebra Univers.,12, No. 3, 399?401 (1981). · Zbl 0466.08003
[438] H. Lakser, ?Principal congruences in N-permutable varieties,? Algebra Univers.,14, No. 1, 64?67 (1982). · Zbl 0492.08007
[439] W. A. Lampe and W. Taylor, ?Simple algebras in varieties,? Algebra Univers.,14, No. 1, 36?43 (1982). · Zbl 0486.08008
[440] H. Länger, ?Verallgemeinerung eines Satzes von Nöbauer und Philipp,? Arch. Math.,27, No. 1, 1?2 (1976). · Zbl 0323.08004
[441] H. Länger, ?A characterization of algebras of polynomial functions,? J. Algebra,65, No. 2, 412?415 (1980). · Zbl 0439.08002
[442] H. Länger, ?Homogeneous superassociative systems,? Colloq. Math.,43, No. 1, 55?60 (1980).
[443] H. Länger and R. Poschel, ?Relational systems with trivial endomorphisms and polymorphisms,? J. Pure Appl. Algebra,32, No. 2, 129?142 (1984). · Zbl 0558.08004
[444] Sin-Min Lee, ?On the sequences representable by idempotent algebras,? Math. Semin. Notes Kobe Univ.,8, No. 2, 287?294 (1980). · Zbl 0454.08002
[445] Z. Lengvárszky, ?A note on minimal clones,? Acta Sci. Math.,50, Nos. 3?4, 335?336 (1986). · Zbl 0614.08005
[446] A. Lenkehegyi, ?On the fundamental theorem of lattice-primal algebras,? Kobe J. Math.,2, No. 2, 103?115 (1985). · Zbl 0598.08008
[447] A. Lenkehegyi, ?Algebraic functions in varieties generated by lattice-primal algebras,? Algebra Univers.,23, No. 1, 5?9 (1986). · Zbl 0606.08004
[448] P. Lescanne, ?Term rewriting systems and algebra,? Lect. Notes Comput. Sci.,170, 166?174 (1984). · Zbl 0546.68079
[449] R. Lewin, ?Interpretations into Heyting algebras,? Algebra Univers.,24, Nos. 1?2, 149?166 (1987). · Zbl 0614.06009
[450] R. Lewin, ?Interpretations into monadic algebras,? Stud. Log.,46, No. 4, 329?342 (1987). · Zbl 0647.08003
[451] J. Libicher, ?Doubly homogeneous Stein algebras,? Sb. Pr. Ped. Fak. Ostrave. A,19, No. 87, 3?22 (1984). · Zbl 0599.20114
[452] Th. Lucas, ?Universal classes of monadic algebras,? Z. Math. Log. Grundl. Math.,22, No. 1, 35?44 (1976). · Zbl 0341.02049
[453] H. Lugowski, Grundzüge der Universellen Algebra, Teubner Verlagsgesel., Leipzig (1976). · Zbl 0374.08001
[454] Sh. O. Macdonald and M. R. Vaughan-Lee, ?Varieties that make one Cross,? J. Austral. Math. Soc. A,26, No. 3, 368?383 (1978). · Zbl 0393.17001
[455] R. McKenzie, ?A finite algebra A with SP(A) not elementary,? Algebra Univers.,8, No. 1, 5?7 (1978). · Zbl 0371.08005
[456] R. McKenzie, ?Para primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties,? Algebra Univers.,8, No. 3, 336?348 (1978). · Zbl 0383.08008
[457] R. McKenzie, ?Residually small varieties of K-algebras,? Algebra Univers.,14, No. 2, 181?196 (1982). · Zbl 0482.08009
[458] R. McKenzie, ?Narrowness implies uniformity,? Algebra Univers.,15, No. 1, 67?85 (1982). · Zbl 0505.08004
[459] R. McKenzie, ?A new product of algebras and a type reduction theorem,? Algebra Univers.,18, No. 1, 29?69 (1984). · Zbl 0543.08005
[460] R. McKenzie, ?Finite equational bases for congruence modular varieties,? Algebra Univers.,24, 224?250 (1987). · Zbl 0648.08006
[461] G. F. McNulty, ?Infinite chains of non-finitely based equational theories,? Algebra Univers.,13, No. 3, 373?378 (1981). · Zbl 0476.08007
[462] G. F. McNulty, T. Nordahl, and H. E. Scheiblich, ?Injectives and projectives in term finite varieties of algebras,? Can. J. Math.,35, No. 5, 769?775 (1983). · Zbl 0524.08007
[463] G. F. McNulty and C. R. Shallon, ?Inherently nonfinitely based finite algebras,? Lect. Notes Math.,1004, 206?231 (1983). · Zbl 0513.08003
[464] J. D. P. Meldrum and G. Pilz, ?Polynomial algebras and polynomial maps,? Contr. Gen. Algebra. 2. Proc. Klagenfurt Conf., June 10?13, 1982, Wien; Stuttgart (1983), pp. 263?272. · Zbl 0522.08003
[465] N. S. Mendelson, ?The spectrum of idempotent varieties of algebras with binary operators based on two variable identities,? Aequat. Math.,17, Nos. 2?3, 384 (1978).
[466] N. S. Mendelson, ?The spectrum of idempotent varieties of algebras with binary operators based on two variable identities,? Aequat. Math.,18, No. 3, 330?332 (1978). · Zbl 0397.08006
[467] J. Mervartová, ?On some properties of genomorphisms of C-algebras,? Arch. Math.,19, No. 2, 99?107 (1983).
[468] V. J. Meskhi, ?Injectivity in the variety of Heyting algebras with regular involution,? 8th Int. Congr. Log., Methodol. and Phil. Sci., LMPS’87, Moscow 17?22 Aug., 1987, Vol. 5, Sec. 1?6, Pt. 1, Moscow (1987), pp. 113?114.
[469] B. Micale, ?Sul centralizzatore del sistema di operazioni di certe algebre,? Rev. Mat. Univ. Parma,12, 89?100 (1986).
[470] R. Mlitz, ?Sull’interpolazione nell’algebra universale,? Proc. Conf. Near-rings and Nearfields, San Benedetto del Tronto, 13?19 Sett., 1981, Parma (1982), pp. 183?186.
[471] A. Muir and M. W. Warner, ?Lattice valued relations and automata,? Discrete Appl. Math.,7, No. 1, 65?78 (1984). · Zbl 0547.68052
[472] J. Mycielski and W. Taylor, ?A compactification of the algebra of terms,? Algebra Univers.,6, No. 2, 159?163 (1976). · Zbl 0358.08001
[473] E. Nelson, ?Filtered products of congruences,? Algebra Univers.,8, No. 2, 266?268 (1978). · Zbl 0377.08007
[474] E. Nelson, ?Homomorphisms of mono-unary algebras,? Pacific J. Math.,99, No. 2, 427?429 (1982). · Zbl 0451.08005
[475] W. D. Neumann, ?Mal’cev conditions, spectra and Kroneker product,? J. Austral. Math. Soc. A,24, No. 1, 103?117 (1978).
[476] J. Niederle, ?Conditions for trivial principal tolerances,? Arch Math.,19, No. 3, 145?152 (1983). · Zbl 0538.08002
[477] J. Nieminen, ?Blocks, error algebras and flou sets,? Glas. Mat.,14, No. 2, 381?385 (1979). · Zbl 0422.04001
[478] W. Nöbauer, ?Local polynomial functions: results and problems,? Univers. Algebra and Appl. Pap. Stefan Banach Int. Cent. Semest., Feb. 15?June 9, 1978, Warszawa (1982), pp. 197?202.
[479] P. Normak, ?To residual smallness,? Uch. Zap. Tart. Univ., No. 764, 53?56 (1987). · Zbl 0637.08002
[480] Sh. Oates-Williams, ?Murskii’s algebra does not satisfy min,? Bull. Austral. Math. Soc.,22, No. 2, 199?203 (1980). · Zbl 0487.08008
[481] Sh. Oates-Williams, ?On the variety generated by Murskii’s algebra,? Algebra Univers.,18, No. 2, 175?177 (1984). · Zbl 0542.08004
[482] W. Ostasiewicz, ?Przyklady rozmytych Struktur algebraicznych,? Pr. Nauk AE Wroclawiu., No. 203, 71?93 (1982).
[483] R. Padmanabhan, ?Equational theory of algebras with a majority polynomial,? Algebra Univers.,7, No. 2, 273?275 (1977). · Zbl 0383.08005
[484] R. Padmanabhan and B. Wolk, ?Equational theories with a minority polynomial,? Proc. Amer. Math. Soc.,83, No. 2, 238?242 (1981). · Zbl 0472.08005
[485] K. Palasi?ska, ?The amalgamation property for some classes of BCK-algebras,? Bull. Sec. Logic.,14, No. 3, 109?113 (1985).
[486] K. Palasi?ska, ?Amalgamation property in some classes of BCK-algebras,? Repts. Math. Log., No. 21, 73?84 (1987).
[487] M. Palasi?ski, ?The distributivity lattice of varieties of BCK-algebras,? Math. Semin. Notes Kobe Univ.,10, No. 2/2, 747?748 (1982).
[488] M. Palasi?ski, ?Varieites of commutative BCK-algebras not generated by their finite members,? Bull. Sec. Logic,12, No. 3, 134?135 (1983).
[489] M. Palsi?ski, ?No non-trivial quasivariety of BCK-algebras has decidable first order theory,? Stud. Log.,46, No. 4, 343?345 (1987). · Zbl 0639.03064
[490] M. Palasi?ski and A. Romanowska, ?Varieties of commutative BCK-algebras not generated by their finite members,? Demonstr. Math.,18, No. 2, 499?508 (1985).
[491] M. Palasi?ski and B, Woz?iakowska, ?An equational basis for commutative BCK-algebras,? Math. Semin. Notes Kobe Univ.,10, No. 1, 175?178 (1982).
[492] P. P. Palfy, ?On certain congruence lattices of finite unary algebras,? Comment. Math. Univ. Carol.,19, No. 1, 89?95 (1978). · Zbl 0382.06007
[493] A. Pasini, ?On the Frattini subalgebra ?(U) of an algebra U,? Boll. Unione Mat. Ital.,12, Nos. 1?2, 37?40 (1975).
[494] Ph. Pattison and W. K. Barlett, ?A factorization procedure for finite algebras,? J. Math. Psychol.,25, No. 1, 51?81 (1982). · Zbl 0488.08002
[495] I. Péak, ?On some compositions of mealy-automata,? Dep. Math. K. Marx Univ. Econ. Budapest [Publ.], No. 3, 23?47 (1983).
[496] J. P. Pécuchet, ?Automates boustrophedon, semi-groupe de Birget et monoide inversif libre,? RIARO. Inf. Theor.,19, No. 1, 71?100 (1985).
[497] A. Pelin and J. H. Galler, ?Solving word problems in free algebras using complexity functions,? Lect. Notes Comput. Sci.,170, 476?495 (1984).
[498] D. Pigozzi, ?Minimal, locally finite varieties that are not finitely axiomatizable,? Algebra Univers.,9, No. 3, 374?390 (1979). · Zbl 0426.08003
[499] D. Pigozzi, ?On the structure of equationally complete varieties,? Colloq. Math.,45, No. 2, 191?201 (1981). · Zbl 0492.08005
[500] D. Pigozzi, ?On the structure of equationally complete varieties. II,? Trans. Amer. Math. Soc.,264, No. 2, 301?319 (1981). · Zbl 0492.08006
[501] G. Pilz, ?Strictly connected group automata,? Proc. Roy. Irish. Acad. A,86, No. 2, 115?118 (1986). · Zbl 0589.68043
[502] G. Pilz and Yong-Sian So, ?Near-rings of polynomials over ?-groups,? Monatsh. Math.,91, No. 1, 73?76 (1981). · Zbl 0447.16030
[503] A. G. Pinus, ?Skeletons of congruence distributive varieties,? in: 8th Int. Congr. Log., Methodol. and Phil. Sci., LMPS’87, Moscow, 17?22 Aug., 1987. Vol, 5: Secs. 1?6, Pt. 1, Moscow (1987), pp. 123?125. · Zbl 0659.08006
[504] A. F. Pixley, ?Characterization of arithmetical varieties,? Algebra Univers.,9, No. 1, 87?98 (1979). · Zbl 0399.08004
[505] A. F. Pixley, ?Some remarks on the two discriminators,? Stud. Sci. Math. Hung.,19, Nos. 2?4, 339?345 (1984). · Zbl 0613.08005
[506] E. Plonka, ?Remarks on weak automorphisms of 1-unary algebras,? Demonstr. Math.,20, Nos. 1?2, 185?190 (1987).
[507] J. Plonka, ?Remark on direct products and the sums of direct systems of algebras,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 5, 515?518 (1975).
[508] J. Plonka, ?On splitting automorphism of relational systems,? Scripta Fac. Sci. Natur. UJEP Brun-Math.,4, No. 1, 55?57 (1974(1975)).
[509] J. Plonka, ?On automorphism groups of relational systems and universal algebras,? Colloq. Math.,42, 341?344 (1979).
[510] J. Plonka, ?On the sum of a system of disjoint unary algebras corresponding to a given type,? Bull. Acad. Pol. Sci. Ser. Sci. Math.,30, Nos. 7?8, 305?309 (1982).
[511] J. Plonka, ?Some characterizations of independent varieties of algebras,? Bull. Pol. Acad. Sci. Math.,31, Nos. 9?12, 321?324 (1983).
[512] J. Plonka, ?On the sum of a direct system of universal algebras with nullary polynomials,? Algebra Univers.,19, No. 2, 197?207 (1984). · Zbl 0548.08001
[513] J. Plonka, ?On the lattice of varieties of unary algebras,? Simon Stevin,59, No. 4, 353?364 (1985).
[514] J. Plonka, ?On lattices of varieties of universal algebras,? Colloq. Math.,53, No. 1, 1?7 (1987).
[515] L. Polák, ?Weak automorphisms of 1-unary algebras,? in: Univers. Algebra and Appl. Pap. Stefan Banach Int. Math. Cent. Semest. Feb. 15?June 9, 1978, Warszawa (1982), pp. 273?275.
[516] G. Pollak, ?Some lattices of varieties containing elements without cover,? Quad. Ric. Sci., No. 109, 91?99 (1981).
[517] M. Polonijo, ?On affine Steiner ternary algebras,? in: Algebr. Conf., Novi Sad, 1981, Novi Sad (1982), p. 137.
[518] Cs. Puskäs, ?A common method for analysis of finite deterministic and non-deterministic automata,? Dep. Math. K. Marx Univ. Budapest [Publ.], No. 3, 77?89 (1983).
[519] R. W. Quackenbush, ?Algebras with minimal spectrum,? Algebra Univers.,10, No. 1, 117?129 (1980). · Zbl 0437.08001
[520] R. W. Quackenbush, ?Varieties with n-principal compact congruences,? Algebra Univers.,14, No. 3, 292?296 (1982). · Zbl 0493.08006
[521] R. W. Quackenbush, ?Minimal para primal algebras,? in: Contrib. Gen. Algebra. 2. Proc. Klagenfurt Conf., June 10?13, 1982, Wien; Stuttgart (1983), pp. 291?301.
[522] R. W. Quackenbush, ?Quasi-affine algebras,? Algebra Univers.,20, No. 3, 318?327 (1985). · Zbl 0573.08003
[523] R. W. Quackenbush, ?Finitely determined arithmetical varieties need not be universallyfinite,? Algebra Univers.,22, Nos. 2?3, 302?303 (1986). · Zbl 0604.08002
[524] H. Reichel, ?Partial algebras ? a second basis for structural induction,? in: Universal Algebra and Links Logic, Algebra, Combinatorics and Comput. Sci., Berlin (1984), pp. 230?240.
[525] H. Reichel, Initial Computability, Algebraic Specifications and Partial Algebras, Akad. Verl., Berlin (1987). · Zbl 0634.68001
[526] A. Restivo and C. Reutenauer, ?Some applications of a theorem of Shirshov to language theory,? Inf. Contr.,57, Nos. 2?3, 205?213 (1984). · Zbl 0569.68059
[527] I. Rival and B. Sands, ?A note on the congruence lattice of a finitely generated algebra,? Proc. Amer. Math. Soc.,72, No. 3, 451?455 (1978). · Zbl 0399.08001
[528] A. Romanowska, ?On free algebras in some equational classes defined by regular equations,? Demonstr. Math.,11, No. 4, 1131?1137 (1978).
[529] A. Romanowska, ?Subdirectly irreducible pseudocomplemented de Morgan algebras,? Algebra Univers.,12, No. 1, 70?75 (1981). · Zbl 0457.06009
[530] A. Romanowska, ?Some varieties of algebras defined by externally compatible identities,? Demonstr. Math.,20, Nos. 1?2, 109?119 (1987). · Zbl 0656.08003
[531] A. Romanowsk and T. Traczyk, ?Commutative BCK-algebras. Subdirectly irreducible algebras and varieties,? Math. Jap.,27, No. 1, 35?48 (1982). · Zbl 0503.03031
[532] I. G. Rosenberg, ?The set of maximal closed classes of operations on an infinite set A has cardinality 22|A|,? Arch. Math.,27, No. 6, 561?568 (1976). · Zbl 0345.02010
[533] I. G. Rosenberg, ?The subalgebra systems of direct powers,? Algebra Univers.,8, No. 2, 221?227 (1978). · Zbl 0381.08003
[534] I. G. Rosenberg, ?Functionally complete algebras in congruence distributive varieties,? Acta Sci. Math.,43, Nos. 3?4, 347?352 (1981). · Zbl 0489.08003
[535] I. G. Rosenberg, ?Clones containing the direct square of a primal algebra,? in: Proc. 12th Int. Symp. Multi-Valued Log., Paris, May 25?27, 1982, New York (1982), pp. 30?34. · Zbl 0552.08003
[536] I. G. Rosenberg and A. Szendrei, ?Degrees of clones and relations,? Houston J. Math.,9, No. 4, 545?580 (1983). · Zbl 0537.08003
[537] M. Rozalija and V. Mihailovi?, ?Some remarks on pn-sequences of algebras,? Zb. Rad. Prir.-Mat. Fak. Univ. Novom Sadu, Ser. Mat.,14, No. 2, 223?232 (1984).
[538] A. A. L. Sangalli, ?Sugli automorfismi delle categorie di algebre simili,? Liv. Mat. Univ. Parma,3, 233?238 (1974).
[539] A. A. L. Sangalli, ?On the structure and representation of clones,? Algebra Univers.,25, No. 1, 101?106 (1988). · Zbl 0636.08003
[540] H. P. Sankappanavar, ?A characterization of principal congruences of de Morgan algebras and its applications,? in: Math. Logic Lat. Amer. Proc. 4th Lat. Amer. Symp., Santiago, 18?20 Dec, 1978, Amsterdam (1980), pp. 341?349. · Zbl 0426.06008
[541] H. P. Sankappanavar, ?Pseudocomplemented Ockham and de Morgan algebras,? Z. Math. Log. Grund. Math.,32, No. 5, 385?394 (1986). · Zbl 0612.06009
[542] N. Sauer, M. G. Stone, and R. H. Weedmark, ?Every finite algebra with congruence lattice M7 has principal congruences,? Lect. Notes Math.,1004, 273?292 (1983). · Zbl 0518.06004
[543] B. M. Schein and V. S. Trohimenko, ?Algebras of multiple functions,? Semigroup Forum,17, No. 1, 1?64 (1979). · Zbl 0397.08001
[544] D. Schweigert, ?On prepolynomially complete algebras,? J. London Math. Soc.,20, No. 2, 179?185 (1979). · Zbl 0431.08003
[545] D. Schweigert, ?On varieties of clones,? Semigroup Forum,26, Nos. 3?4, 275?285 (1983). · Zbl 0518.08004
[546] D. Schweigert, ?Congruence relations of multialgebras,? Discrete Math.,53, 249?253 (1985). · Zbl 0554.08001
[547] D. Schweigert, ?On weak isomorphisms and equational theories,? in: Contrib. Gen. Algebra. 3: Proc. Vienna Conf., June 21?24, 1984, Wien; Stuttgart (1985), pp. 335?340.
[548] B. ?e?elja, ?Fuzzy congruence relations and constructions of algebras,? Zb. Rad. Prir.-Mat. Fak. Univ. Novom Sadu, Ser. Mat.,12, 447?455 (1982).
[549] J. Shapiro, ?Finite equational bases for subalgebra distributive varieties,? Algebra Univ.,24, Nos. 1?2, 36?40 (1987). · Zbl 0644.08003
[550] En Wei Shi, ?A BCK algebraic characteristic of the fuzzy inverse operator,? Fuzzy Sets Systems,23, No. 3, 387?391 (1987). · Zbl 0646.06013
[551] G. Simi, ?Sulla varieta delie algebre premodali,? Boll. Unione Mat. Ital.,2, 365?371 (1980). · Zbl 0446.03049
[552] L. A. Skornjakov, ?Complements in the congruence lattice of a polygon over a commutative monoid,? in: Lattice Theory Proc. Colloq. Szeged, 1974, Amsterdam (1976), pp. 395?412.
[553] L. A. Skornjakov, ?Unary algebras with regular endomorphism monoids,? Acta Sci. Math.,40, Nos. 3?4, 375?381 (1978). · Zbl 0371.08001
[554] L. A. Skornjakov, ?Convexors,? Stud. Sci. Math. Hung.,116, Nos. 1?2, 25?34 (1981).
[555] J. D. Smith, ?Mal’cev varieties,? Lect. Notes Math.,554 (1976).
[556] M. G. Stone, ?On endomorphism structure for algebras over a fixed set,? Colloq. Math.,33, No. 1, 41?45 (1975). · Zbl 0278.08007
[557] L. Szabo, ?Concrete representation of related structures of universal algebras. I,? Acta Sci. Math.,40, Nos. 1?2, 175?184 (1978). · Zbl 0388.08003
[558] L. Szabo, ?Interpolation in algebras with doubly primitive automorphism groups,? Elektron. Informationsverarb. Kybern.,19, No. 12, 603?610 (1983).
[559] L. Szabo and A. Szendrei, ?Almost all algebras with triply transitive automorphism groups are functionally complete,? Acta Sci. Math.,41, Nos. 3?4, 391?402 (1979). · Zbl 0427.08001
[560] A. Szendrei, ?On weakly commuting operations,? in: Contrib. Gen. Algebra. Proc. Klagenfurt Confr. 1978, Klagenfurt (1979), pp. 373?380.
[561] A. Szendrei, ?Identities in idempotent affine algebras,? Algebra Univers.,12, No. 2, 172?199 (1981). · Zbl 0461.08007
[562] A. Szendrei, ?Algebras of prime cardinality with a cyclic automorphism,? Arch. Math.,39, No. 5, 417?427 (1982). · Zbl 0487.08003
[563] A. Szendrei, ?Short maximal chains in the lattice of clones over a finite set,? Math. Nachr.,110, 43?58 (1983). · Zbl 0527.08003
[564] A. Szendrei, ?Idempotent algebras with restrictions on subalgebras,? Acta Sci. Math.,51, Nos. 1?2, 251?268 (1987). · Zbl 0633.08002
[565] A. Szendrei, ?Every idempotent plain algebra generates a minimal variety,? Algebra Univers.,25, No. 1, 36?39 (1988). · Zbl 0618.08002
[566] Walter Taylor, ?The fine spectrum of a variety,? Algebra Univers.,5, No. 2, 263?303 (1975). · Zbl 0336.08004
[567] Walter Taylor, ?Pure compactifications in quasi-primal varieties,? Can. J. Math.,28, No. 1, 50?62 (1976). · Zbl 0326.08006
[568] Walter Taylor, ?Varieties obeying homotopy laws,? Can. J. Math.,29, No. 3, 498?527 (1977). · Zbl 0357.08004
[569] Walter Taylor, ?Mal’tsev conditions and spectra,? J. Austral. Math. Soc., A,29, No. 2, 143?152 (1980). · Zbl 0439.08005
[570] Walter Taylor, ?Hyperidentities and hypervarieties,? Aequat. Math.,22, Nos. 2?3, 312?314 (1981).
[571] Walter Taylor, ?A note on interpretations of Heyting algebras,? Algebra Univers.,24, No. 3, 289?291 (1987). · Zbl 0642.06008
[572] V. Trnková and J. Adámek, ?Analysis of languages accepted by varietor machines in category,? in: Univers. Algebra Appl. Pap. Stefan Banach Int. Math. Cent. Semest., Feb. 15?June 9, 1978, Warszawa (1982), pp. 257?272.
[573] S. Tulipiani, ?On classes of algebras with the definability of congruences,? Algebra Univers.,14, No. 3, 269?279 (1982). · Zbl 0499.08001
[574] S. Tulipiani, ?On the universal theory of classes of finite models,? Trans. Amer. Math. Soc.,284, No. 1, 163?170 (1984).
[575] J. T?ma, ?A simple geometric proof of a theorem on Mn,? Comment. Math. Univ. Carol.,26, No. 2, 233?239 (1985).
[576] J. T?ma, ?Some finite congruence lattices. I,? Czech. Math. J.,36, No. 2, 298?330 (1986).
[577] C. Urosu, ?Congruences décomposable sur produits directs des algebres universelles,? An. Univ. Timisoara. Ser. Sti. Fiz.-Chim.,18, No. 2, 177?185 (1980). · Zbl 0478.08007
[578] C. Urosu, ?Asupra laticei congrue Intelor unei sume directe de algebre universale,? Bull. Sci. Si Tehn. Inst. Politehn. Timisoara. Ser. Mat.-Fiz.,25, No. 1, 21?25 (1980).
[579] C. Urosu, ?Sousalgèbres complètes des produits direct des algèbres universelles,? An. Univ. Timisoara. Ser. Sti. Mat.,19, No. 1, 91?95 (1981).
[580] C. Urosu, ?Congruente compact decompozabile pe produse directe,? Bull. Sti. Si. Tehn. Inst. Politehn. Timisoara. Mat.-Fiz.,26, No. 2, 17?19 (1981).
[581] C. Urosu, ?Sur les congruences dans produits des varietes,? in: Lucr. Semin. Mat. Si. Fiz. Inst. Politehn. Traian Vuia, Timisoara, 1982, Timisoara (1982), pp. 25?28.
[582] C. Urosu, ?Sur les proprietés laticeales des congruences,? in: Lucr. Smein. Mat. Si. fiz. Inst. Politehn. Timisoara, 1983, Noiem., Timisoara (1983), pp. 76?78.
[583] J. C. Varlet, ?Large congruences in p-algebras and double p-algebras,? Algebra Univers.,9, No. 2, 165?178 (1979). · Zbl 0436.06009
[584] J. C. Varlet, ?A strenthening of the notion of essential extension,? Bull. Soc. Roy. Sci. Liége,48, Nos. 11?12, 432?437 (1979).
[585] J. C. Varlet, ?Regularity in p-algebras and p-semilattices,? in: Univers. Algebra Appl. Pap. Stefan Banach Int. Math. Cent. Semestr., Feb. 15?June 19, 1978, Warszawa (1982), pp. 369?378.
[586] J. Vas de Carvalho, ?The subvariety K2,0 of Ockham algebras,? Bull. Soc. Roy. Sci. Liége,53, No. 6, 393?400 (1984).
[587] H.-J. Vogel, ?Kongruenzen auf Klons und vollinvariante Kongruenzen relatic freier Algebren. I,? Rostock Math. Kolloq., No. 30, 37?55 (1986).
[588] G. Vojvodi? and B. Seselja, ?On one decomposition of fuzzy sets and relations,? Proc. Conf. Algebra Logic, Zagreb, 7?9, June, 1984, Novi Sad (1985), pp. 177?184.
[589] G. Vojdovi? and B. Seselja, ?On the lattice of weak fuzzy congruence relations on algebras,? Zb. Rad. Prir.-Mat. Fak. Univ. Novom Sadu, Ser. Mat.,15, No. 1, 199?207 (1985).
[590] M. V. Volkov, ?On the join of varieties,? Simon Stevin (Belg.),58, No. 4, 311?317 (1984). · Zbl 0596.08005
[591] L. Vrancken-Mawet, ?The 0-distributivity in the class of subalgebra lattices of Heyting algebras and closure algebras,? Comment. Math. Univ. Carol.,28, No. 2, 387?396 (1987). · Zbl 0625.06006
[592] L. Vrancken-Mawet, ?Sous-algèbres de Frattini d’algèbre de fermeture,? Bull. Soc. Math. Belg. B,39, No. 1, 33?45 (1987). · Zbl 0625.06005
[593] L. Vrancken-Mawet and G. Hansoul, ?The subalgebra lattice of a Heyting algebra,? Czech. Math. J.,37, No. 1, 34?41 (1987). · Zbl 0625.06004
[594] H. Werner, ?Discriminator-algebras. Algebraic representation and model theoretic properties,? in: Stud. Alg. Anwend. (1978), p. 6. · Zbl 0374.08002
[595] H. Werner, ?A generalization of Comer’s sheaf-representation theorem,? in: Contrib. Gen. Algebra. Proc. Klagenfurt Conf., 1978, Klagenfurt (1979), pp. 395?397.
[596] H. Werner, ?Sheaf constructions in universal algebras and model theory,? in: Univers. Algebra Appl. Pap. Stefan Banach Int. Math. Cent. Semestr. Feb. 15?June 9, 1978, Warszawa (1982), pp. 133?179.
[597] H. Werner, ?Boolean constructions and their role in universal algebra and model theory,? in: Universal Algebra and Links Logic, Algebra, Combinatorics and Comput. Sci., Berlin (1984), pp. 106?114.
[598] R. Wille, ?Allgemeine Algebra ? zwischen Grundlageforschun und Anwendbarkeit,? Mathematikunterricht,22, No. 2, 40?64 (1976).
[599] B. Wojdylo, ?Programming language from algebraic point of view,? in: Contrib. Gen. Algebra Proc. Klagenfurt Conf., 1978, Klagenfurt (1979), pp. 405?421.
[600] B. Wózniakowska, ?Finitely axiomatizable varieties of BCK-algebras,? Semigroup Forum,31, No. 3, 361?366 (1985). · Zbl 0567.08006
[601] A. Wrónski, ?BCK-algebras do not form a variety,? Math. Jap.,28, No. 2, 211?213 (1983).
[602] A. Wronski, ?On varieties of commutative BCK-algebras not generated by their finite members,? Math. Jap.,30, No. 2, 227?233 (1985).
[603] A. Wronski and J. K. Kabzinski, ?There is no largest variety of BCK-algebras,? Math. Jap.,29, No. 4, 545?549 (1984).
[604] I. Zemery, ?Almost equational classes of algebras,? Algebra Univers.,23, No. 3, 293?307 (1986). · Zbl 0621.08006
[605] U. Zimmermann and P. Köhler, ?Products of finitely based varieties of Brouwerian semi-lattices,? Algebra Univers.,18, No. 1, 110?116 (1984). · Zbl 0545.06003
[606] R. Zippel, ?The future of computer algebra,? SIGSAM Bull.,18, No. 2, 6?7 (1984).
[607] P. Zlato?, ?A characterization of some Boolean powers,? Arch. Math.,33, No. 2, 133?143 (1979). · Zbl 0406.03054
[608] P. Zlato?, ?A Mal’cev condition for compact congruence to be principal,? Acta Sci. Math.,43, Nos. 3?4, 383?387 (1981).
[609] P. Zlato?, ?On congruences in direct sums of algebras,? Comment. Math. Univ. Carol.,24, No. 3, 519?524 (1983). · Zbl 0544.08002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.