Los, Johan; Mepschen, Tiemar; Top, Jaap Rational Poncelet. (English) Zbl 1440.11096 Int. J. Number Theory 14, No. 10, 2641-2655 (2018). MSC: 11G05 14H52 51N35 PDF BibTeX XML Cite \textit{J. Los} et al., Int. J. Number Theory 14, No. 10, 2641--2655 (2018; Zbl 1440.11096) Full Text: DOI OpenURL
Derickx, Maarten; Sutherland, Andrew V. Torsion subgroups of elliptic curves over quintic and sextic number fields. (English) Zbl 1421.11049 Proc. Am. Math. Soc. 145, No. 10, 4233-4245 (2017). MSC: 11G05 11G18 14G35 14H51 PDF BibTeX XML Cite \textit{M. Derickx} and \textit{A. V. Sutherland}, Proc. Am. Math. Soc. 145, No. 10, 4233--4245 (2017; Zbl 1421.11049) Full Text: DOI arXiv OpenURL
Jeon, Daeyeol Families of elliptic curves over cyclic cubic number fields with prescribed torsion. (English) Zbl 1354.11044 Math. Comput. 85, No. 299, 1485-1502 (2016). Reviewer: Shabnam Akhtari (Eugene) MSC: 11G05 11G18 14H37 PDF BibTeX XML Cite \textit{D. Jeon}, Math. Comput. 85, No. 299, 1485--1502 (2016; Zbl 1354.11044) Full Text: DOI OpenURL
Jeon, Daeyeol Automorphism groups of hyperelliptic modular curves. (English) Zbl 1343.14023 Proc. Japan Acad., Ser. A 91, No. 7, 95-100 (2015). MSC: 14H37 14G35 11G18 PDF BibTeX XML Cite \textit{D. Jeon}, Proc. Japan Acad., Ser. A 91, No. 7, 95--100 (2015; Zbl 1343.14023) Full Text: DOI Euclid OpenURL
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Families of elliptic curves with prescribed torsion subgroups over dihedral quartic fields. (English) Zbl 1394.11046 J. Number Theory 147, 342-363 (2015). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., J. Number Theory 147, 342--363 (2015; Zbl 1394.11046) Full Text: DOI OpenURL
Jeon, Daeyeol Defining equations of \(X_1(2N)\). (English) Zbl 07443907 Korean J. Math. 21, No. 3, 305-309 (2013). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon}, Korean J. Math. 21, No. 3, 305--309 (2013; Zbl 07443907) Full Text: DOI OpenURL
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Infinite families of elliptic curves over dihedral quartic number fields. (English) Zbl 1268.11077 J. Number Theory 133, No. 1, 115-122 (2013). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., J. Number Theory 133, No. 1, 115--122 (2013; Zbl 1268.11077) Full Text: DOI OpenURL
Sutherland, Andrew V. Constructing elliptic curves over finite fields with prescribed torsion. (English) Zbl 1267.11074 Math. Comput. 81, No. 278, 1131-1147 (2012). MSC: 11G05 11-04 11G20 14G15 PDF BibTeX XML Cite \textit{A. V. Sutherland}, Math. Comput. 81, No. 278, 1131--1147 (2012; Zbl 1267.11074) Full Text: DOI arXiv OpenURL
Lorenzini, Dino Torsion and Tamagawa numbers. (Torsion et nombres de Tamagawa.) (English. French summary) Zbl 1283.11088 Ann. Inst. Fourier 61, No. 5, 1995-2037 (2011). Reviewer: Fumio Hazama (Hatoyama) MSC: 11G05 11G10 11G35 11G40 PDF BibTeX XML Cite \textit{D. Lorenzini}, Ann. Inst. Fourier 61, No. 5, 1995--2037 (2011; Zbl 1283.11088) Full Text: DOI EuDML Link OpenURL
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Families of elliptic curves over quartic number fields with prescribed torsion subgroups. (English) Zbl 1267.11072 Math. Comput. 80, No. 276, 2395-2410 (2011). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., Math. Comput. 80, No. 276, 2395--2410 (2011; Zbl 1267.11072) Full Text: DOI OpenURL
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Families of elliptic curves over cubic number fields with prescribed torsion subgroups. (English) Zbl 1214.11071 Math. Comput. 80, No. 273, 579-591 (2011). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., Math. Comput. 80, No. 273, 579--591 (2011; Zbl 1214.11071) Full Text: DOI OpenURL
Baaziz, Houria Equations for the modular curve \(X_1(N)\) and models of elliptic curves with torsion points. (English) Zbl 1252.11038 Math. Comput. 79, No. 272, 2371-2386 (2010). Reviewer: Noburo Ishii (Kyoto) MSC: 11F03 11G05 11G18 11G30 PDF BibTeX XML Cite \textit{H. Baaziz}, Math. Comput. 79, No. 272, 2371--2386 (2010; Zbl 1252.11038) Full Text: DOI OpenURL
Tu, Fang-Ting; Yang, Yifan Defining equations of \(X_{0}(2^{2n})\). (English) Zbl 1210.11069 Osaka J. Math. 46, No. 1, 105-113 (2009). MSC: 11G18 11F03 11G05 11G30 PDF BibTeX XML Cite \textit{F.-T. Tu} and \textit{Y. Yang}, Osaka J. Math. 46, No. 1, 105--113 (2009; Zbl 1210.11069) Full Text: arXiv Euclid OpenURL
Yang, Yifan Defining equations of modular curves. (English) Zbl 1137.11027 Adv. Math. 204, No. 2, 481-508 (2006). MSC: 11G18 11F11 11F20 11G30 PDF BibTeX XML Cite \textit{Y. Yang}, Adv. Math. 204, No. 2, 481--508 (2006; Zbl 1137.11027) Full Text: DOI OpenURL
Leprevost, Franck Jacobians of some curves of genus 2: torsion and simplicity. (Jacobiennes de certaines courbes de genre 2: torsion et simplicité.) (French) Zbl 0864.14017 J. Théor. Nombres Bordx. 7, No. 1, 283-306 (1995). Reviewer: L.Chiantini (Siena) MSC: 14H40 PDF BibTeX XML Cite \textit{F. Leprevost}, J. Théor. Nombres Bordx. 7, No. 1, 283--306 (1995; Zbl 0864.14017) Full Text: DOI Numdam EuDML EMIS OpenURL
Atkin, A. O. L.; Morain, F. Finding suitable curves for the elliptic curve method of factorization. (English) Zbl 0815.11063 Math. Comput. 60, No. 201, 399-405 (1993). Reviewer: M.Pohst (Berlin) MSC: 11Y05 14H52 PDF BibTeX XML Cite \textit{A. O. L. Atkin} and \textit{F. Morain}, Math. Comput. 60, No. 201, 399--405 (1993; Zbl 0815.11063) Full Text: DOI OpenURL
Flynn, E. V. Sequences of rational torsions on abelian varieties. (English) Zbl 0788.14040 Invent. Math. 106, No. 2, 433-442 (1991). Reviewer: T.Sekiguchi (Tokyo) MSC: 14K30 14G05 14H40 PDF BibTeX XML Cite \textit{E. V. Flynn}, Invent. Math. 106, No. 2, 433--442 (1991; Zbl 0788.14040) Full Text: DOI EuDML OpenURL
Flynn, E. V. Large rational torsion on abelian varieties. (English) Zbl 0757.14025 J. Number Theory 36, No. 3, 257-265 (1990). MSC: 11G10 14K99 14G05 PDF BibTeX XML Cite \textit{E. V. Flynn}, J. Number Theory 36, No. 3, 257--265 (1990; Zbl 0757.14025) Full Text: DOI OpenURL
Fung, G. W.; Ströher, H.; Williams, H. C.; Zimmer, H. G. Torsion groups of elliptic curves with integral j-invariant over pure cubic fields. (English) Zbl 0734.14014 J. Number Theory 36, No. 1, 12-45 (1990). MSC: 14H52 14Q05 11R16 14G25 PDF BibTeX XML Cite \textit{G. W. Fung} et al., J. Number Theory 36, No. 1, 12--45 (1990; Zbl 0734.14014) Full Text: DOI OpenURL