On the Kurzweil integral for functions with values in ordered spaces. II. (English) Zbl 0821.28007

The authors prove, for the integral defined in Part I by B. Riečan [Acta Math. Univ. Comenianae 56/57, 75-83 (1990; Zbl 0735.28008)], the usual theorem on the integral of bounded limits of uniformly convergent sequences.


28B15 Set functions, measures and integrals with values in ordered spaces
26A39 Denjoy and Perron integrals, other special integrals


Zbl 0735.28008
Full Text: EuDML


[1] FREMLIN D. H.: A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 276-284. · Zbl 0313.06016
[2] KURZWEIL J.: Nicht absolut Konvergente Integrate. Teubner, Leipzig, 1980.
[3] LUXEMBURG W. A., ZAANEN A. C.: Riesz Spaces. North-Holland, Amsterdam, 1971. · Zbl 0231.46014
[4] MALIČKÝ P.: The monotone limit convergence theorem for elementary functions with values in a vector lattice. Comment. Math. Univ. Carolin. 27 (1986), 53-67. · Zbl 0608.28004
[5] RIEČAN B.: On the Kurzweil integral for functions with values in ordered spaces I. Acta Math. Univ. Comenian. 56-57 (1990), 75-83. · Zbl 0735.28008
[6] RIEČAN B.: On the Kurzweil integral in Compact Topological Spaces. Rad. Mat. 2 (1986), 151-163. · Zbl 0623.28003
[7] RIEČAN B., VOLAUF P.: On a technical lemma in lattice ordered groups. Acta Math. Univ. Comenian. 44-45 (1984), 31-35. · Zbl 0558.06019
[8] WRIGHT J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85. · Zbl 0215.48101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.