×

Multiple recurrence and infinite measure preserving odometers. (English) Zbl 0919.28010

H. Furstenberg [J. Anal. Math. 31, 204-256 (1977; Zbl 0347.28016)] showed that every finite measure-preserving transformation exhibits multiple recurrence, a profound generalization of Poincaré recurrence. In this note the case of infinite measure-preserving systems is shown to be entirely different. Using an odometer construction, for every \(p>1\) an ergodic infinite measure-preserving system is found that is \(p\)-fold recurrent but not \((p+1)\)-fold recurrent.

MSC:

28D05 Measure-preserving transformations

Citations:

Zbl 0347.28016
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Aaronson and M. Nadkarni,L eigenvalues and L 2 spectra of non-singular transformations, Proceedings of the London Mathematical Society55 (1987), 538–570. · Zbl 0636.28010 · doi:10.1112/plms/s3-55.3.538
[2] J. Choksi, J. Hawkins and V. Prasad,Abelian cocyles for nonsingular ergodic transformations and genericity of type III 1 transformations, Monatschefte für Mathematik103 (1987), 187–205. · Zbl 0623.58010 · doi:10.1007/BF01364339
[3] N. G. De Bruijn,On bases for sets of integers, Publicationes Mathematicae Debrecen1 (1950), 232–242. · Zbl 0038.18502
[4] S. Eigen and A. Hajian,Poincaré Sequences in Infinite Measure Spaces and Complementing Subsets of the Integers, Lecture Notes in Mathematics1342, Springer-Verlag, Berlin, 1988, pp. 154–157. · Zbl 0658.28010
[5] S. Eigen and A. Hajian,Sequences of integers and ergodic transformations, Annals of Mathematics73 (1989), 256–262. · Zbl 0672.28006
[6] N. Friedman,Introduction to Ergodic Theory, Van Nostrand Reinhold, New York, 1970. · Zbl 0212.40004
[7] H. Furstenberg,Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. · Zbl 0459.28023
[8] A. Hajian and S. Kakutani,An example of an ergodic m.p.t. defined on an infinite measure space, Lecture Notes in Mathematics160, Springer-Verlag, Berlin, 1970, pp. 45–52. · Zbl 0213.07601
[9] T. Hamachi and M. Osikawa,Ergodic groups of automorphisms and Krieger’s theoerems, Seminar on Mathematical Sciences, Keio University, 1981. · Zbl 0472.28015
[10] D. Hill,{\(\sigma\)}-finite invariant measures on infinite product spaces, Transactions of the American Mathematical Society153 (1971), 347–370. · Zbl 0212.08303
[11] B. Host, J. F. Mela and F. Parreau,Nonsingular transformations and spectral analysis of measures, Bulletin de la Société Mathématique de France119 (1991), 33–90.
[12] Y. Ito, T. Kamae and J. Shiokawa,Point spectrum and Hausdorff dimension, inNuclear Theory and Combinatorics (J. Akiyama et al., eds.), World Scientific, Singapore, 1985. · Zbl 0614.28013
[13] D. Rudolph and C. Silva,Minimal self-joinings for nonsingular transformations, Ergodic Theory and Dynamical Systems9 (1989), 759–800. · Zbl 0677.28008 · doi:10.1017/S0143385700005320
[14] K. Schmidt,Some solved and unsolved problems concerning orbit equivalence of countable group actions, inProceedings of the Conference on Ergodic Theory and Related Topics II (Georgenthal, 1986), Teubner-Texte Math 94, Teubner, Leipzig, 1987, pp. 171–184.
[15] E. Szemerédi,On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica27 (1975), 199–245. · Zbl 0303.10056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.