Khan, Vakeel A.; Tuba, Umme Topological properties of Jordan intuitionistic fuzzy normed spaces. (English) Zbl 1520.46041 Math. Slovaca 73, No. 2, 439-454 (2023). MSC: 46S40 46A45 26E50 40C05 PDF BibTeX XML Cite \textit{V. A. Khan} and \textit{U. Tuba}, Math. Slovaca 73, No. 2, 439--454 (2023; Zbl 1520.46041) Full Text: DOI
Verma, Aradhana; Awasthi, Anurag; Srivastava, Sudhir Kumar On some new class of soft real sequences. (English) Zbl 07690136 Gaṇita 72, No. 1, 209-222 (2022). MSC: 40A35 40A05 26E50 PDF BibTeX XML Cite \textit{A. Verma} et al., Gaṇita 72, No. 1, 209--222 (2022; Zbl 07690136) Full Text: Link
García-Pacheco, Francisco Javier; Kama, Ramazan \(f\)-statistical convergence on topological modules. (English) Zbl 1520.40001 Electron Res. Arch. 30, No. 6, 2183-2195 (2022). MSC: 40A35 40J05 54E15 PDF BibTeX XML Cite \textit{F. J. García-Pacheco} and \textit{R. Kama}, Electron Res. Arch. 30, No. 6, 2183--2195 (2022; Zbl 1520.40001) Full Text: DOI
Nuray, Fatih Matrix summability of sequences of sets. (English) Zbl 1513.40056 Khayyam J. Math. 8, No. 2, 195-203 (2022). MSC: 40F05 40D25 40C05 54B20 PDF BibTeX XML Cite \textit{F. Nuray}, Khayyam J. Math. 8, No. 2, 195--203 (2022; Zbl 1513.40056) Full Text: DOI
Dey, Rinku C.; Tripathy, Binod Chandra On a class of sequences related to \(p\)-absolutely summable sequences in metric space defined by Orlicz functions. (English) Zbl 1513.46009 Sahand Commun. Math. Anal. 19, No. 4, 25-38 (2022). MSC: 46A45 40A05 40F05 PDF BibTeX XML Cite \textit{R. C. Dey} and \textit{B. C. Tripathy}, Sahand Commun. Math. Anal. 19, No. 4, 25--38 (2022; Zbl 1513.46009) Full Text: DOI
Çolak, Rifat; Kayan, Emine \(df\)-statistical convergence of order \(\alpha\) and \(df\)-strong Cesàro summability of order \(\alpha\) in accordance to a modulus in metric spaces. (English) Zbl 1507.40006 Thai J. Math. 20, No. 2, 861-875 (2022). MSC: 40A35 40G15 40A05 40J05 PDF BibTeX XML Cite \textit{R. Çolak} and \textit{E. Kayan}, Thai J. Math. 20, No. 2, 861--875 (2022; Zbl 1507.40006) Full Text: Link
Kumar, Sudhanshu; Verma, Arvind Kumar Generalized Cesàro vector-valued sequence space using modulus function. (English) Zbl 1507.46003 Thai J. Math. 20, No. 2, 797-811 (2022). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{A. K. Verma}, Thai J. Math. 20, No. 2, 797--811 (2022; Zbl 1507.46003) Full Text: Link
Verma, Arvind; Singh, Lav Kumar \((\Delta^m_v,f)\)-lacunary statistical convergence of order \(\alpha\). (English) Zbl 1507.40008 Proyecciones 41, No. 4, 791-804 (2022). MSC: 40A35 40F05 46A45 PDF BibTeX XML Cite \textit{A. Verma} and \textit{L. K. Singh}, Proyecciones 41, No. 4, 791--804 (2022; Zbl 1507.40008) Full Text: DOI
Pal, Sudip Kumar; Chakraborty, Sagar On certain generalized summability methods of order convergence in \((l)\)-groups. (English) Zbl 1505.40019 J. Anal. 30, No. 3, 1045-1058 (2022). MSC: 40J05 40A05 40A35 PDF BibTeX XML Cite \textit{S. K. Pal} and \textit{S. Chakraborty}, J. Anal. 30, No. 3, 1045--1058 (2022; Zbl 1505.40019) Full Text: DOI
Şahin Bayram, Nilay \(P\)-strong convergence with respect to an Orlicz function. (English) Zbl 1505.40017 Turk. J. Math. 46, No. 3, 832-838 (2022). MSC: 40C15 40F05 40A35 PDF BibTeX XML Cite \textit{N. Şahin Bayram}, Turk. J. Math. 46, No. 3, 832--838 (2022; Zbl 1505.40017) Full Text: DOI
Kayan, Emine; Çolak, Rifat df-statistical convergence in connection with a modulus in metric spaces. (English) Zbl 07533666 Commun. Stat., Theory Methods 50, No. 10, 2270-2280 (2021). MSC: 62-XX PDF BibTeX XML Cite \textit{E. Kayan} and \textit{R. Çolak}, Commun. Stat., Theory Methods 50, No. 10, 2270--2280 (2021; Zbl 07533666) Full Text: DOI
Savaş, Ekrem On generalized invariant statistical convergence of weight \(g\). (English) Zbl 07530931 Commun. Stat., Theory Methods 50, No. 8, 1699-1708 (2021). MSC: 40A05 40A35 46A45 62-XX PDF BibTeX XML Cite \textit{E. Savaş}, Commun. Stat., Theory Methods 50, No. 8, 1699--1708 (2021; Zbl 07530931) Full Text: DOI
Khan, Vakeel A.; Tuba, Umme On paranormed ideal convergent sequence spaces defined by Jordan totient function. (English) Zbl 1504.46007 J. Inequal. Appl. 2021, Paper No. 96, 16 p. (2021). MSC: 46A45 40C05 40A05 47B37 PDF BibTeX XML Cite \textit{V. A. Khan} and \textit{U. Tuba}, J. Inequal. Appl. 2021, Paper No. 96, 16 p. (2021; Zbl 1504.46007) Full Text: DOI
Kama, Ramazan; Altay, Bilal Multiplier sequence spaces defined by \(f\)-statistical summability and Orlicz-Pettis theorem. (English) Zbl 1490.46005 Numer. Funct. Anal. Optim. 42, No. 12, 1410-1422 (2021). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{R. Kama} and \textit{B. Altay}, Numer. Funct. Anal. Optim. 42, No. 12, 1410--1422 (2021; Zbl 1490.46005) Full Text: DOI
Başarır, M. A note on the \((\lambda ,v)_h^\alpha\)-statistical convergence of the functions defined on the product of time scales. (English) Zbl 1484.40001 Azerb. J. Math., Spec. Iss., 15-28 (2021). MSC: 40A30 46A35 26E70 PDF BibTeX XML Cite \textit{M. Başarır}, Azerb. J. Math., 15--28 (2021; Zbl 1484.40001) Full Text: Link
Belen, Cemal; Yıldırım, Mustafa; Sümbül, Canan On statistical and strong convergence with respect to a modulus function and a power series method. (English) Zbl 1496.40008 Filomat 34, No. 12, 3981-3993 (2020). MSC: 40A35 40C15 40F05 40G10 PDF BibTeX XML Cite \textit{C. Belen} et al., Filomat 34, No. 12, 3981--3993 (2020; Zbl 1496.40008) Full Text: DOI
Savaş, Ekrem \((A, \varphi)\)-lacunary statistical convergence of order \(\alpha\). (English) Zbl 1496.40015 Filomat 34, No. 2, 639-645 (2020). MSC: 40A35 PDF BibTeX XML Cite \textit{E. Savaş}, Filomat 34, No. 2, 639--645 (2020; Zbl 1496.40015) Full Text: DOI
Jalal, Tanweer Topological properties of some sequences defined over \(n\)-normed spaces. (English) Zbl 1490.46004 Proyecciones 39, No. 5, 1137-1155 (2020). MSC: 46A45 PDF BibTeX XML Cite \textit{T. Jalal}, Proyecciones 39, No. 5, 1137--1155 (2020; Zbl 1490.46004) Full Text: DOI
Torgut, Birgül; Altin, Yavuz \(f\)-statistical convergence of double sequences of order \(\widetilde{\alpha}\). (English) Zbl 1484.40007 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 5, 803-808 (2020). MSC: 40A35 40B05 40C05 46A45 PDF BibTeX XML Cite \textit{B. Torgut} and \textit{Y. Altin}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 5, 803--808 (2020; Zbl 1484.40007) Full Text: DOI
Savas, Ekrem On some new sequence spaces of order alpha defined by infinite matrix. (English) Zbl 1474.46017 Appl. Anal. Discrete Math. 14, No. 3, 710-718 (2020). MSC: 46A45 PDF BibTeX XML Cite \textit{E. Savas}, Appl. Anal. Discrete Math. 14, No. 3, 710--718 (2020; Zbl 1474.46017) Full Text: DOI
Khan, Mohammad Faisal Some results on strongly Cesáro ideal convergent sequence spaces. (English) Zbl 1489.40015 J. Math. 2020, Article ID 8897155, 4 p. (2020). MSC: 40G05 46A45 PDF BibTeX XML Cite \textit{M. F. Khan}, J. Math. 2020, Article ID 8897155, 4 p. (2020; Zbl 1489.40015) Full Text: DOI
Verma, A. K.; Kumar, Sudhanshu Lacunary statistical convergence of order \(\alpha, \beta\) for generalized vector-valued difference sequence spaces. (English) Zbl 1458.40009 J. Anal. 28, No. 3, 711-726 (2020). MSC: 40A35 40C05 46A45 PDF BibTeX XML Cite \textit{A. K. Verma} and \textit{S. Kumar}, J. Anal. 28, No. 3, 711--726 (2020; Zbl 1458.40009) Full Text: DOI
Kama, Ramazan Spaces of vector sequences defined by the \(f\)-statistical convergence and some characterizations of normed spaces. (English) Zbl 1445.46021 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 74, 9 p. (2020). MSC: 46B45 46B15 40A35 PDF BibTeX XML Cite \textit{R. Kama}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 74, 9 p. (2020; Zbl 1445.46021) Full Text: DOI
Şengül, Hacer; Arica, Zelal On strong \(N_\theta^\alpha(A,F)\)-convergence. (English) Zbl 1502.40008 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 1629-1637 (2019). MSC: 40F05 40A35 40C05 46A45 PDF BibTeX XML Cite \textit{H. Şengül} and \textit{Z. Arica}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 1629--1637 (2019; Zbl 1502.40008) Full Text: DOI
Pal, Sudip Kumar; Chakraborty, Sagar On generalized statistical convergence and boundedness of Riesz space-valued sequences. (English) Zbl 1499.40042 Filomat 33, No. 15, 4989-5002 (2019). MSC: 40A35 46A40 40J05 PDF BibTeX XML Cite \textit{S. K. Pal} and \textit{S. Chakraborty}, Filomat 33, No. 15, 4989--5002 (2019; Zbl 1499.40042) Full Text: DOI
Savas, Ekrem \(A\)-statistical convergence of order \(\alpha\) via \(\varphi\)-function. (English) Zbl 1499.40044 Appl. Anal. Discrete Math. 13, No. 3, 918-926 (2019). MSC: 40A35 PDF BibTeX XML Cite \textit{E. Savas}, Appl. Anal. Discrete Math. 13, No. 3, 918--926 (2019; Zbl 1499.40044) Full Text: DOI
León-Saavedra, Fernando; del Carmen Listán-García, M.; Pérez Fernández, Francisco Javier; del Pilar Romero de la Rosa, María On statistical convergence and strong Cesàro convergence by moduli. (English) Zbl 1499.40035 J. Inequal. Appl. 2019, Paper No. 298, 12 p. (2019). MSC: 40A35 40G15 PDF BibTeX XML Cite \textit{F. León-Saavedra} et al., J. Inequal. Appl. 2019, Paper No. 298, 12 p. (2019; Zbl 1499.40035) Full Text: DOI
Pancaroǧlu Akın, Nimet \(f\)-asymptotically lacunary ideal equivalence of double sequences. (English) Zbl 1499.40020 J. Inequal. Appl. 2019, Paper No. 224, 11 p. (2019). MSC: 40A05 40A35 40E15 PDF BibTeX XML Cite \textit{N. Pancaroǧlu Akın}, J. Inequal. Appl. 2019, Paper No. 224, 11 p. (2019; Zbl 1499.40020) Full Text: DOI
Yaying, Taja; Hazarika, Bipan Arithmetic convergent sequence space defined by modulus function. (English) Zbl 1438.46012 Bol. Soc. Parana. Mat. (3) 37, No. 4, 129-135 (2019). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{T. Yaying} and \textit{B. Hazarika}, Bol. Soc. Parana. Mat. (3) 37, No. 4, 129--135 (2019; Zbl 1438.46012) Full Text: Link
Şengül, Hacer; Et, Mikail \(f\)-lacunary statistical convergence and strong \(f\)-lacunary summability of order \(\alpha \). (English) Zbl 1499.40049 Filomat 32, No. 13, 4513-4521 (2018). MSC: 40A35 40C05 PDF BibTeX XML Cite \textit{H. Şengül} and \textit{M. Et}, Filomat 32, No. 13, 4513--4521 (2018; Zbl 1499.40049) Full Text: DOI
Bhardwaj, Vinod K.; Dhawan, Shweta Application of \(f\)-lacunary statistical convergence to approximation theorems. (English) Zbl 1498.40003 J. Inequal. Appl. 2018, Paper No. 281, 25 p. (2018). MSC: 40A35 40E15 41A36 41A25 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} and \textit{S. Dhawan}, J. Inequal. Appl. 2018, Paper No. 281, 25 p. (2018; Zbl 1498.40003) Full Text: DOI
Das, Bimal Chandra A new type of difference operator \(\Delta^3\) on triple sequence spaces. (English) Zbl 1457.46002 Proyecciones 37, No. 4, 683-697 (2018). MSC: 46A45 40A05 40B05 40C05 47B39 PDF BibTeX XML Cite \textit{B. C. Das}, Proyecciones 37, No. 4, 683--697 (2018; Zbl 1457.46002) Full Text: DOI
Kişi, Ömer; Gümüş, Hafize; Savas, Ekrem New definitions about \(A^{\mathcal I}\)-statistical convergence with respect to a sequence of modulus functions and lacunary sequences. (English) Zbl 1432.40006 Axioms 7, No. 2, Paper No. 24, 12 p. (2018). MSC: 40A35 40A05 PDF BibTeX XML Cite \textit{Ö. Kişi} et al., Axioms 7, No. 2, Paper No. 24, 12 p. (2018; Zbl 1432.40006) Full Text: DOI
Deepmala; Vandana; Subramanian, N.; Mishra, Lakshmi Narayan The Fibonacci numbers of asymptotically lacunary \(\chi^2\) over probabilistic \(p\)-metric spaces. (English) Zbl 1434.40006 TWMS J. Pure Appl. Math. 9, No. 1, 94-107 (2018). MSC: 40A35 40B05 40J05 PDF BibTeX XML Cite \textit{Deepmala} et al., TWMS J. Pure Appl. Math. 9, No. 1, 94--107 (2018; Zbl 1434.40006) Full Text: Link
Savaş, E. On the lacunary \((A,\phi)\)-statistical convergence of double sequences. (English) Zbl 1427.40002 Ukr. Math. J. 70, No. 6, 980-989 (2018) and Ukr. Mat. Zh. 70, No. 6, 848-858 (2018). MSC: 40A35 40B05 PDF BibTeX XML Cite \textit{E. Savaş}, Ukr. Math. J. 70, No. 6, 980--989 (2018; Zbl 1427.40002) Full Text: DOI
Bhardwaj, Vinod K.; Dhawan, Shweta Density by moduli and Korovkin type approximation theorem of Boyanov and Veselinov. (English) Zbl 1416.41024 Kyungpook Math. J. 58, No. 4, 733-746 (2018). MSC: 41A36 40A35 40A30 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} and \textit{S. Dhawan}, Kyungpook Math. J. 58, No. 4, 733--746 (2018; Zbl 1416.41024) Full Text: DOI
Colak, Rifat; Et, Mikail; Altin, Yavuz \( \lambda(\Delta_i^m)\)-statistical convergence of order \(\alpha \). (English) Zbl 1495.40003 Kal’menov, Tynysbek (ed.) et al., International conference ‘Functional analysis in interdisciplinary applications’, FAIA2017, Astana, Kazakhstan, October 2–5, 2017. Proceedings. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1880, 030013, 7 p. (2017). MSC: 40A35 47B39 PDF BibTeX XML Cite \textit{R. Colak} et al., AIP Conf. Proc. 1880, 030013, 7 p. (2017; Zbl 1495.40003) Full Text: DOI
Sengul, Hacer; Isik, Mahmut; Et, Mikail \(f\)-lacunary statistical convergence of order \(( \alpha, \beta )\). (English) Zbl 1495.40005 Kal’menov, Tynysbek (ed.) et al., International conference ‘Functional analysis in interdisciplinary applications’, FAIA2017, Astana, Kazakhstan, October 2–5, 2017. Proceedings. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1880, 030011, 5 p. (2017). MSC: 40A35 PDF BibTeX XML Cite \textit{H. Sengul} et al., AIP Conf. Proc. 1880, 030011, 5 p. (2017; Zbl 1495.40005) Full Text: DOI
Das, Pratulananda; Ghosal, Sanjoy; Som, Sumit Different types of quasi weighted \(\alpha \beta\)-statistical convergence in probability. (English) Zbl 1488.40018 Filomat 31, No. 5, 1463-1473 (2017). MSC: 40A35 40G15 60B10 PDF BibTeX XML Cite \textit{P. Das} et al., Filomat 31, No. 5, 1463--1473 (2017; Zbl 1488.40018) Full Text: DOI
Işik, Mahmut; Altin, Yavuz \(f_{(\lambda,\mu)}\)-statistical convergence of order \(\tilde\alpha\) for double sequences. (English) Zbl 1383.40007 J. Inequal. Appl. 2017, Paper No. 246, 8 p. (2017). MSC: 40A35 40C05 46A45 40B05 PDF BibTeX XML Cite \textit{M. Işik} and \textit{Y. Altin}, J. Inequal. Appl. 2017, Paper No. 246, 8 p. (2017; Zbl 1383.40007) Full Text: DOI
Ghosal, Sanjoy; Banerjee, Mandobi; Ghosh, Avishek Weighted modulus \(S_\theta\)-convergence of order \(\alpha\) in probability. (English) Zbl 1377.40002 Arab J. Math. Sci. 23, No. 2, 242-257 (2017). MSC: 40A35 40G15 60B10 PDF BibTeX XML Cite \textit{S. Ghosal} et al., Arab J. Math. Sci. 23, No. 2, 242--257 (2017; Zbl 1377.40002) Full Text: DOI
Bhardwaj, Vinod K.; Dhawan, Shweta Density by moduli and Wijsman lacunary statistical convergence of sequences of sets. (English) Zbl 1376.40002 J. Inequal. Appl. 2017, Paper No. 25, 20 p. (2017). MSC: 40A35 40G15 40J05 54A20 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} and \textit{S. Dhawan}, J. Inequal. Appl. 2017, Paper No. 25, 20 p. (2017; Zbl 1376.40002) Full Text: DOI
Subramanian, N.; Bivin, M. R.; Saivaraju, N. The generalized non-absolute type of sequence spaces. (English) Zbl 1424.40009 Bol. Soc. Parana. Mat. (3) 34, No. 2, 263-274 (2016). MSC: 40A05 40C05 46A45 03E72 PDF BibTeX XML Cite \textit{N. Subramanian} et al., Bol. Soc. Parana. Mat. (3) 34, No. 2, 263--274 (2016; Zbl 1424.40009) Full Text: Link
Subramanian, N. Some sets of \(\chi^2\)-summable sequences of fuzzy numbers defined by a modulus. (English) Zbl 1424.40007 Bol. Soc. Parana. Mat. (3) 34, No. 1, 53-64 (2016). MSC: 40A05 40C05 40D05 26E50 46A45 PDF BibTeX XML Cite \textit{N. Subramanian}, Bol. Soc. Parana. Mat. (3) 34, No. 1, 53--64 (2016; Zbl 1424.40007) Full Text: Link
Bhardwaj, Vinod K.; Dhawan, Shweta Density by moduli and lacunary statistical convergence. (English) Zbl 1470.40013 Abstr. Appl. Anal. 2016, Article ID 9365037, 11 p. (2016). MSC: 40A35 46A45 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} and \textit{S. Dhawan}, Abstr. Appl. Anal. 2016, Article ID 9365037, 11 p. (2016; Zbl 1470.40013) Full Text: DOI
Braha, Naim L. Some applications of summability theory. (English) Zbl 1359.40001 Dutta, Hemen (ed.) et al., Current topics in summability theory and applications. Singapore: Springer (ISBN 978-981-10-0912-9/hbk; 978-981-10-0913-6/ebook). 357-411 (2016). MSC: 40A05 40A35 46A45 46B45 46B20 40E05 40-02 PDF BibTeX XML Cite \textit{N. L. Braha}, in: Current topics in summability theory and applications. Singapore: Springer. 357--411 (2016; Zbl 1359.40001) Full Text: DOI
Murugesan, C.; Subramanian, N. The entire sequence over Musielak \(p\)-metric space. (English) Zbl 1359.46004 J. Egypt. Math. Soc. 24, No. 2, 233-238 (2016). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{C. Murugesan} and \textit{N. Subramanian}, J. Egypt. Math. Soc. 24, No. 2, 233--238 (2016; Zbl 1359.46004) Full Text: DOI
Ghosal, Sanjoy Weighted statistical convergence of order \(\alpha\) and its applications. (English) Zbl 1346.40003 J. Egypt. Math. Soc. 24, No. 1, 60-67 (2016). Reviewer: Hüseyin Çakallı (Istanbul) MSC: 40A35 40G15 60B10 PDF BibTeX XML Cite \textit{S. Ghosal}, J. Egypt. Math. Soc. 24, No. 1, 60--67 (2016; Zbl 1346.40003) Full Text: DOI
Subramanian, N. The generalized difference of \(\chi^2\) over \(p\)-metric spaces defined by Musielak. (English) Zbl 1412.40019 Bol. Soc. Parana. Mat. (3) 33, No. 1, 111-125 (2015). MSC: 40A05 40C05 40D05 PDF BibTeX XML Cite \textit{N. Subramanian}, Bol. Soc. Parana. Mat. (3) 33, No. 1, 111--125 (2015; Zbl 1412.40019) Full Text: Link
Khan, Vakeel A.; Shafiq, Mohd; Rababah, Rami Kamel Ahmad On \(I\)-convergent sequence spaces defined by a compact operator and a modulus function. (English) Zbl 1339.40005 Cogent Math. 2, No. 1, Article ID 1036509, 13 p. (2015). MSC: 40A30 41A10 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. 2, Article ID 1036509, 13 p. (2015; Zbl 1339.40005) Full Text: DOI
Bhardwaj, Vinod K.; Dhawan, Shweta \(f\)-statistical convergence of order \(\alpha\) and strong Cesàro summability of order \(\alpha\) with respect to a modulus. (English) Zbl 1351.40004 J. Inequal. Appl. 2015, Paper No. 332, 14 p. (2015). MSC: 40A35 40C05 46A45 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} and \textit{S. Dhawan}, J. Inequal. Appl. 2015, Paper No. 332, 14 p. (2015; Zbl 1351.40004) Full Text: DOI
Aiyub, Mohammad Strongly \((V^{\lambda}, A, \Delta^{n}_{(vm)}, p, q)\)-summable sequence spaces defined by modulus function and statistical convergence. (English) Zbl 1350.46004 Proyecciones 34, No. 2, 191-203 (2015). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{M. Aiyub}, Proyecciones 34, No. 2, 191--203 (2015; Zbl 1350.46004) Full Text: DOI
Bivin, M. R.; Saivaraju, N.; Subramanian, N. \(\mu\)-lacunary \(\chi_{A_{uv}}^2\)-convergence of order \(\alpha\) with \(p\)-metric defined by \(mn\) sequence of moduli Musielak. (English) Zbl 1344.40001 J. Egypt. Math. Soc. 23, No. 3, 500-506 (2015). MSC: 40A05 40C05 40D05 40A35 PDF BibTeX XML Cite \textit{M. R. Bivin} et al., J. Egypt. Math. Soc. 23, No. 3, 500--506 (2015; Zbl 1344.40001) Full Text: DOI
Khan, Vakeel A.; Tabassum, Sabiha; Khan, Nazneen Some new \(I\)-convergent double sequences space of invariant means. (English) Zbl 1348.46006 Afr. Mat. 26, No. 7-8, 1697-1708 (2015). MSC: 46A45 40A35 40B05 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Afr. Mat. 26, No. 7--8, 1697--1708 (2015; Zbl 1348.46006) Full Text: DOI
Khan, Vakeel A.; Shafiq, Mohd; Lafuerza-Guillen, Bernardo On paranorm I-convergent sequence spaces defined by a compact operator. (English) Zbl 1329.41007 Afr. Mat. 26, No. 7-8, 1387-1398 (2015). MSC: 41A10 41A25 41A36 40A30 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Afr. Mat. 26, No. 7--8, 1387--1398 (2015; Zbl 1329.41007) Full Text: DOI
Savaş, Ekrem A sequence space and uniform \((A,\varphi)\)-statistical convergence. (English) Zbl 1343.40004 Mohapatra, Ram N. (ed.) et al., Mathematics and computing. Selected papers based on the presentations at the 2nd international conference, ICMC, Haldia, India, January 5–10, 2015. New Delhi: Springer (ISBN 978-81-322-2451-8/hbk; 978-81-322-2452-5/ebook). Springer Proceedings in Mathematics & Statistics 139, 481-493 (2015). MSC: 40A35 46A45 PDF BibTeX XML Cite \textit{E. Savaş}, Springer Proc. Math. Stat. 139, 481--493 (2015; Zbl 1343.40004) Full Text: DOI
Hussain, Nawab (ed.); Garcia-Falset, Jesus (ed.); Taoudi, Mohamed-Aziz (ed.); Vetro, Calogero (ed.) Editorial: Fixed point theorems with applications to the solvability of operator equations and inclusions on function spaces. (English) Zbl 1321.00105 J. Funct. Spaces 2015, Article ID 415950, 1 p. (2015). MSC: 00B15 PDF BibTeX XML Cite \textit{N. Hussain} (ed.) et al., J. Funct. Spaces 2015, Article ID 415950, 1 p. (2015; Zbl 1321.00105) Full Text: DOI
Alotaibi, Abdullah; Raj, Kuldip; Mohiuddine, S. A. Some generalized difference sequence spaces defined by a sequence of moduli in \(n\)-normed spaces. (English) Zbl 1342.46007 J. Funct. Spaces 2015, Article ID 413850, 8 p. (2015). MSC: 46A45 40J05 PDF BibTeX XML Cite \textit{A. Alotaibi} et al., J. Funct. Spaces 2015, Article ID 413850, 8 p. (2015; Zbl 1342.46007) Full Text: DOI
Subramanian, N. The almost lacunary \(\chi^2\) sequence spaces defined by modulus. (English) Zbl 1412.40018 Bol. Soc. Parana. Mat. (3) 32, No. 2, 209-220 (2014). MSC: 40A05 40C05 40D05 PDF BibTeX XML Cite \textit{N. Subramanian}, Bol. Soc. Parana. Mat. (3) 32, No. 2, 209--220 (2014; Zbl 1412.40018) Full Text: Link
Bakery, Awad A. A class of sequences defined by weak ideal convergence and Musielak-Orlicz function. (English) Zbl 1473.46007 Abstr. Appl. Anal. 2014, Article ID 894659, 7 p. (2014). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{A. A. Bakery}, Abstr. Appl. Anal. 2014, Article ID 894659, 7 p. (2014; Zbl 1473.46007) Full Text: DOI
Pancaroglu, Nimet; Nuray, Fatih Invariant statistical convergence of sequences of sets with respect to a modulus function. (English) Zbl 1474.40014 Abstr. Appl. Anal. 2014, Article ID 818020, 5 p. (2014). MSC: 40A35 PDF BibTeX XML Cite \textit{N. Pancaroglu} and \textit{F. Nuray}, Abstr. Appl. Anal. 2014, Article ID 818020, 5 p. (2014; Zbl 1474.40014) Full Text: DOI
Subramanian, N.; Thirunavukkarasu, P.; Babu, R. The modular sequence space of \(\chi^2\). (English) Zbl 1412.46019 Bol. Soc. Parana. Mat. (3) 32, No. 1, 71-87 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{N. Subramanian} et al., Bol. Soc. Parana. Mat. (3) 32, No. 1, 71--87 (2014; Zbl 1412.46019) Full Text: Link
Ghosal, Sanjoy Generalized weighted random convergence in probability. (English) Zbl 1338.40011 Appl. Math. Comput. 249, 502-509 (2014). MSC: 40A35 PDF BibTeX XML Cite \textit{S. Ghosal}, Appl. Math. Comput. 249, 502--509 (2014; Zbl 1338.40011) Full Text: DOI
Sharma, Sunil K.; Esi, Ayhan Double sequence spaces definedby a sequence of modulus functions over \(n\)-normed spaces. (English) Zbl 1320.46007 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 53, No. 1, 117-134 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{S. K. Sharma} and \textit{A. Esi}, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 53, No. 1, 117--134 (2014; Zbl 1320.46007) Full Text: Link
Savaş, Ekrem On generalized sequence spaces via modulus function. (English) Zbl 1326.40003 J. Inequal. Appl. 2014, Paper No. 101, 8 p. (2014). MSC: 40A35 40H05 46A45 PDF BibTeX XML Cite \textit{E. Savaş}, J. Inequal. Appl. 2014, Paper No. 101, 8 p. (2014; Zbl 1326.40003) Full Text: DOI
Subramanian, N.; Saivaraju, N.; Velmurugan, S. Ideal convergent sequence spaces over \(p\)-metric spaces defined by Musielak-modulus functions. (English) Zbl 1312.46013 J. Egypt. Math. Soc. 22, No. 3, 428-439 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{N. Subramanian} et al., J. Egypt. Math. Soc. 22, No. 3, 428--439 (2014; Zbl 1312.46013) Full Text: DOI
Bakery, Awad A.; Elnour Mohamed, Elsayed Abdelbayen; Alamin Ahmed, Mohamed Some generalized difference sequence spaces defined by ideal convergence and Musielak-Orlicz function. (English) Zbl 1470.46008 Abstr. Appl. Anal. 2013, Article ID 972363, 9 p. (2013). MSC: 46A45 46A70 PDF BibTeX XML Cite \textit{A. A. Bakery} et al., Abstr. Appl. Anal. 2013, Article ID 972363, 9 p. (2013; Zbl 1470.46008) Full Text: DOI
Murugesan, C.; Subramanian, N. Properties of \(\Gamma^2\) defined by a modulus function. (English) Zbl 1412.46013 Bol. Soc. Parana. Mat. (3) 31, No. 1, 193-204 (2013). MSC: 46A45 40B05 PDF BibTeX XML Cite \textit{C. Murugesan} and \textit{N. Subramanian}, Bol. Soc. Parana. Mat. (3) 31, No. 1, 193--204 (2013; Zbl 1412.46013) Full Text: Link
Subramanian, N.; Balasubramanian, K. Review article on \(\chi^2\) sequence spaces defined by modulus and fuzzy numbers. (English) Zbl 1412.46017 Bol. Soc. Parana. Mat. (3) 31, No. 2, 83-99 (2013). MSC: 46A45 40A05 40C05 40D05 PDF BibTeX XML Cite \textit{N. Subramanian} and \textit{K. Balasubramanian}, Bol. Soc. Parana. Mat. (3) 31, No. 2, 83--99 (2013; Zbl 1412.46017) Full Text: Link
Savaş, Ekrem On some new sequence spaces defined by infinite matrix and modulus. (English) Zbl 1375.40012 Adv. Difference Equ. 2013, Paper No. 274, 9 p. (2013). MSC: 40H05 40C05 PDF BibTeX XML Cite \textit{E. Savaş}, Adv. Difference Equ. 2013, Paper No. 274, 9 p. (2013; Zbl 1375.40012) Full Text: DOI
Nagarajan, Subramanian; Nallswamy, Saivaraju; Subramanian, Velmurugan The generalized \(\chi^{2}\) sequence spaces over \(p\)-metric spaces defined by Musielak. (English) Zbl 1306.46008 Math. Sci., Springer 7, Paper No. 39, 13 p. (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{S. Nagarajan} et al., Math. Sci., Springer 7, Paper No. 39, 13 p. (2013; Zbl 1306.46008) Full Text: DOI
Bakery, Awad A. Generalized difference \(\lambda \)-sequence spaces defined by ideal convergence and the Musielak-Orlicz function. (English) Zbl 1304.46007 Abstr. Appl. Anal. 2013, Article ID 123798, 13 p. (2013). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{A. A. Bakery}, Abstr. Appl. Anal. 2013, Article ID 123798, 13 p. (2013; Zbl 1304.46007) Full Text: DOI
Konca, Şükran; Başarır, Metin Generalized difference sequence spaces associated with a multiplier sequence on a real \(n\)-normed space. (English) Zbl 1293.46002 J. Inequal. Appl. 2013, Paper No. 335, 12 p. (2013). MSC: 46A45 40A35 40J05 PDF BibTeX XML Cite \textit{Ş. Konca} and \textit{M. Başarır}, J. Inequal. Appl. 2013, Paper No. 335, 12 p. (2013; Zbl 1293.46002) Full Text: DOI
Mohamed, Nashat F.; Bakery, Awad A. Mappings of type Orlicz and generalized Cesáro sequence space. (English) Zbl 1279.47094 J. Inequal. Appl. 2013, Paper No. 186, 9 p. (2013). Reviewer: Albrecht Pietsch (Jena) MSC: 47L20 47B06 PDF BibTeX XML Cite \textit{N. F. Mohamed} and \textit{A. A. Bakery}, J. Inequal. Appl. 2013, Paper No. 186, 9 p. (2013; Zbl 1279.47094) Full Text: DOI
Bala, Indu On Cesàro sequence space defined by a modulus function. (English) Zbl 1286.46007 Demonstr. Math. 46, No. 1, 157-163 (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{I. Bala}, Demonstr. Math. 46, No. 1, 157--163 (2013; Zbl 1286.46007) Full Text: DOI
Gurumoorthy, N.; Chandrasekhara Rao, K. The rate of sectional entire sequence spaces. (English) Zbl 1413.46007 Bol. Soc. Parana. Mat. (3) 30, No. 2, 63-69 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{N. Gurumoorthy} and \textit{K. Chandrasekhara Rao}, Bol. Soc. Parana. Mat. (3) 30, No. 2, 63--69 (2012; Zbl 1413.46007) Full Text: Link
Subramanian, N.; Esi, Ayhan; Misra, U. K.; Panda, M. S. The generalized difference gai sequences of fuzzy numbers defined by Orlicz functions. (English) Zbl 1413.40003 Bol. Soc. Parana. Mat. (3) 30, No. 2, 9-18 (2012). MSC: 40A05 40C05 40D05 26E50 PDF BibTeX XML Cite \textit{N. Subramanian} et al., Bol. Soc. Parana. Mat. (3) 30, No. 2, 9--18 (2012; Zbl 1413.40003) Full Text: Link
Kumar, Vijay; Sharma, Archana Asymptotically lacunary equivalent sequences defined by ideals and modulus function. (English) Zbl 1276.40003 Math. Sci., Springer 6, Paper No. 23, 6 p. (2012). MSC: 40A35 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{A. Sharma}, Math. Sci., Springer 6, Paper No. 23, 6 p. (2012; Zbl 1276.40003) Full Text: DOI
Savas, Ekrem; Das, Pratulananda; Dutta, Sudipta A note on strong matrix summability via ideals. (English) Zbl 1251.40002 Appl. Math. Lett. 25, No. 4, 733-738 (2012). Reviewer: Hüseyin Çakalli (Istanbul) MSC: 40A35 40G15 40F05 PDF BibTeX XML Cite \textit{E. Savas} et al., Appl. Math. Lett. 25, No. 4, 733--738 (2012; Zbl 1251.40002) Full Text: DOI
Tuğ, Orhan; Doğan, Mutlay; Kurudirek, Abdullah Some new double-sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function. (English) Zbl 1248.46008 ISRN Math. Anal. 2012, Article ID 524962, 11 p. (2012). MSC: 46A45 40B05 PDF BibTeX XML Cite \textit{O. Tuğ} et al., ISRN Math. Anal. 2012, Article ID 524962, 11 p. (2012; Zbl 1248.46008) Full Text: DOI
Tuğ, Orhan Some almost lacunary double sequence spaces defined by Orlicz functions in 2-normed spaces. (English) Zbl 1248.46007 ISRN Math. Anal. 2012, Article ID 378575, 11 p. (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{O. Tuğ}, ISRN Math. Anal. 2012, Article ID 378575, 11 p. (2012; Zbl 1248.46007) Full Text: DOI
Subramanian, N.; Chandrasekhara Rao, K.; Balasubramanian, K. On \(\lambda\)-summable entire sequences of fuzzy numbers. (English) Zbl 1413.40007 Bol. Soc. Parana. Mat. (3) 29, No. 2, 51-60 (2011). MSC: 40A35 26E50 PDF BibTeX XML Cite \textit{N. Subramanian} et al., Bol. Soc. Parana. Mat. (3) 29, No. 2, 51--60 (2011; Zbl 1413.40007) Full Text: Link
Subramanian, N.; Chandrasekhara Rao, K.; Balasubramanian, K. The semi normed space defined by entire sequences. (English) Zbl 1413.46011 Bol. Soc. Parana. Mat. (3) 29, No. 2, 37-41 (2011). MSC: 46A45 46B45 PDF BibTeX XML Cite \textit{N. Subramanian} et al., Bol. Soc. Parana. Mat. (3) 29, No. 2, 37--41 (2011; Zbl 1413.46011) Full Text: Link
Başarir, Metin; Altundağ, Selma On asymptotically equivalent difference sequences with respect to a modulus function. (English) Zbl 1258.40002 Ric. Mat. 60, No. 2, 299-311 (2011). MSC: 40D25 40B05 46A45 PDF BibTeX XML Cite \textit{M. Başarir} and \textit{S. Altundağ}, Ric. Mat. 60, No. 2, 299--311 (2011; Zbl 1258.40002) Full Text: DOI
Çolak, R.; Altın, Y.; Mursaleen, M. On some sets of difference sequences of fuzzy numbers. (English) Zbl 1244.26057 Soft Comput. 15, No. 4, 787-793 (2011). MSC: 26E50 PDF BibTeX XML Cite \textit{R. Çolak} et al., Soft Comput. 15, No. 4, 787--793 (2011; Zbl 1244.26057) Full Text: DOI
Das, Pratulananda; Savas, Ekrem; Bhunia, Santanu Two valued measure and some new double sequence spaces in \(2\)-normed spaces. (English) Zbl 1249.46003 Czech. Math. J. 61, No. 3, 809-825 (2011). MSC: 46A45 40A99 PDF BibTeX XML Cite \textit{P. Das} et al., Czech. Math. J. 61, No. 3, 809--825 (2011; Zbl 1249.46003) Full Text: DOI EuDML
Khan, Vakeel A. Some new generalized difference sequence spaces defined by a sequence of moduli. (English) Zbl 1240.46011 Appl. Math., Ser. B (Engl. Ed.) 26, No. 1, 104-108 (2011). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{V. A. Khan}, Appl. Math., Ser. B (Engl. Ed.) 26, No. 1, 104--108 (2011; Zbl 1240.46011) Full Text: DOI
Atici, Gülcan; Bektaş, Çiğdem A. On some new generalized difference sequence spaces defined by a sequence of moduli. (English) Zbl 1274.46013 Math. Slovaca 61, No. 5, 789-798 (2011). Reviewer: Binod Chandra Tripathy (Guwahati) MSC: 46A45 PDF BibTeX XML Cite \textit{G. Atici} and \textit{Ç. A. Bektaş}, Math. Slovaca 61, No. 5, 789--798 (2011; Zbl 1274.46013) Full Text: DOI
Hazarika, Bipan On paranormed ideal convergent generalized difference strongly summable sequence spaces defined over \(n\)-normed spaces. (English) Zbl 1239.46003 ISRN Math. Anal. 2011, Article ID 317423, 17 p. (2011). MSC: 46A45 PDF BibTeX XML Cite \textit{B. Hazarika}, ISRN Math. Anal. 2011, Article ID 317423, 17 p. (2011; Zbl 1239.46003) Full Text: DOI
Savaş, Ekrem; Kılıçman, Adem A note on some strongly sequence spaces. (English) Zbl 1239.46004 Abstr. Appl. Anal. 2011, Article ID 598393, 8 p. (2011). MSC: 46A45 PDF BibTeX XML Cite \textit{E. Savaş} and \textit{A. Kılıçman}, Abstr. Appl. Anal. 2011, Article ID 598393, 8 p. (2011; Zbl 1239.46004) Full Text: DOI
Savaş, E. \(A\)-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function. (English) Zbl 1230.46018 Abstr. Appl. Anal. 2011, Article ID 741382, 9 p. (2011). MSC: 46B45 40A35 PDF BibTeX XML Cite \textit{E. Savaş}, Abstr. Appl. Anal. 2011, Article ID 741382, 9 p. (2011; Zbl 1230.46018) Full Text: DOI
Savaş, Ekrem; Patterson, Richard F. Double sequence spaces defined by a modulus. (English) Zbl 1265.40029 Math. Slovaca 61, No. 2, 245-256 (2011). MSC: 40C05 40D25 PDF BibTeX XML Cite \textit{E. Savaş} and \textit{R. F. Patterson}, Math. Slovaca 61, No. 2, 245--256 (2011; Zbl 1265.40029) Full Text: DOI
Savaş, Ekrem Some new double sequence spaces defined by Orlicz function in \(n\)-normed space. (English) Zbl 1226.46006 J. Inequal. Appl. 2011, Article ID 592840, 9 p. (2011). MSC: 46A45 PDF BibTeX XML Cite \textit{E. Savaş}, J. Inequal. Appl. 2011, Article ID 592840, 9 p. (2011; Zbl 1226.46006) Full Text: DOI EuDML
Çakallı, Hüseyin On \(G\)-continuity. (English) Zbl 1211.40002 Comput. Math. Appl. 61, No. 2, 313-318 (2011). MSC: 40A05 54C10 PDF BibTeX XML Cite \textit{H. Çakallı}, Comput. Math. Appl. 61, No. 2, 313--318 (2011; Zbl 1211.40002) Full Text: DOI
Işik, Mahmut Generalized vector-valued sequence spaces defined by modulus functions. (English) Zbl 1215.46008 J. Inequal. Appl. 2010, Article ID 457892, 7 p. (2010). MSC: 46A45 46A70 40A35 PDF BibTeX XML Cite \textit{M. Işik}, J. Inequal. Appl. 2010, Article ID 457892, 7 p. (2010; Zbl 1215.46008) Full Text: DOI
Savaş, E. On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function. (English) Zbl 1213.46009 J. Inequal. Appl. 2010, Article ID 482392, 8 p. (2010). MSC: 46A45 40A35 46A70 PDF BibTeX XML Cite \textit{E. Savaş}, J. Inequal. Appl. 2010, Article ID 482392, 8 p. (2010; Zbl 1213.46009) Full Text: DOI EuDML
Savaş, E. \(\Delta ^m\)-Strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function. (English) Zbl 1208.46004 Appl. Math. Comput. 217, No. 1, 271-276 (2010). MSC: 46A45 46A70 40A35 PDF BibTeX XML Cite \textit{E. Savaş}, Appl. Math. Comput. 217, No. 1, 271--276 (2010; Zbl 1208.46004) Full Text: DOI
Srivastava, P. D.; Kumar, Sudhanshu Generalized vector-valued paranormed sequence space using modulus function. (English) Zbl 1196.46010 Appl. Math. Comput. 215, No. 12, 4110-4118 (2010). MSC: 46A45 PDF BibTeX XML Cite \textit{P. D. Srivastava} and \textit{S. Kumar}, Appl. Math. Comput. 215, No. 12, 4110--4118 (2010; Zbl 1196.46010) Full Text: DOI
Başarir, Metin; Altundağ, Selma On generalized paranormed statistically convergent sequence spaces defined by Orlicz function. (English) Zbl 1178.46005 J. Inequal. Appl. 2009, Article ID 729045, 13 p. (2009). MSC: 46A45 PDF BibTeX XML Cite \textit{M. Başarir} and \textit{S. Altundağ}, J. Inequal. Appl. 2009, Article ID 729045, 13 p. (2009; Zbl 1178.46005) Full Text: DOI
Cheng, LiXin; Lin, GuoChen; Lan, YongYi; Liu, Hui Measure theory of statistical convergence. (English) Zbl 1189.60014 Sci. China, Ser. A 51, No. 12, 2285-2303 (2008). Reviewer: Chrysoula G. Kokologiannaki (Patras) MSC: 60B05 46N30 46G99 40A99 PDF BibTeX XML Cite \textit{L. Cheng} et al., Sci. China, Ser. A 51, No. 12, 2285--2303 (2008; Zbl 1189.60014) Full Text: DOI