Albritton, Dallas; Dong, Hongjie Regularity properties of passive scalars with rough divergence-free drifts. (English) Zbl 1521.35100 Arch. Ration. Mech. Anal. 247, No. 5, Paper No. 75, 44 p. (2023). MSC: 35K10 35B45 35B65 PDF BibTeX XML Cite \textit{D. Albritton} and \textit{H. Dong}, Arch. Ration. Mech. Anal. 247, No. 5, Paper No. 75, 44 p. (2023; Zbl 1521.35100) Full Text: DOI arXiv
Kwon, Hyunju The role of the pressure in the regularity theory for the Navier-Stokes equations. (English) Zbl 1512.35443 J. Differ. Equations 357, 1-31 (2023). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{H. Kwon}, J. Differ. Equations 357, 1--31 (2023; Zbl 1512.35443) Full Text: DOI arXiv
Hirata, Daisuke Regularity criterion in terms of BMO-type norm of the pressure gradient for the Navier-Stokes equations on unbounded domains. (English) Zbl 07648436 J. Math. Anal. Appl. 521, No. 1, Article ID 126949, 16 p. (2023). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35B65 PDF BibTeX XML Cite \textit{D. Hirata}, J. Math. Anal. Appl. 521, No. 1, Article ID 126949, 16 p. (2023; Zbl 07648436) Full Text: DOI
Chen, Qionglei; Li, Zhen Regularity criterion for the 3D Navier-Stokes equations in the boardline case. (English) Zbl 1512.76024 J. Math. Fluid Mech. 25, No. 1, Paper No. 12, 13 p. (2023). Reviewer: Luigi Amedeo Bianchi (Povo) MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{Z. Li}, J. Math. Fluid Mech. 25, No. 1, Paper No. 12, 13 p. (2023; Zbl 1512.76024) Full Text: DOI
Chamorro, Diego; Llerena, David A crypto-regularity result for the micropolar fluids equations. (English) Zbl 1504.35302 J. Math. Anal. Appl. 520, No. 2, Article ID 126922, 28 p. (2023). MSC: 35Q35 76A05 76U05 35B65 35B20 35D30 37K10 PDF BibTeX XML Cite \textit{D. Chamorro} and \textit{D. Llerena}, J. Math. Anal. Appl. 520, No. 2, Article ID 126922, 28 p. (2023; Zbl 1504.35302) Full Text: DOI arXiv
Li, Shuai; Wang, Wendong Interior and boundary regularity criteria for the 6D steady Navier-Stokes equations. (English) Zbl 1501.35284 J. Differ. Equations 342, 418-440 (2023). MSC: 35Q30 76D03 76D05 35B65 35D30 28A78 PDF BibTeX XML Cite \textit{S. Li} and \textit{W. Wang}, J. Differ. Equations 342, 418--440 (2023; Zbl 1501.35284) Full Text: DOI arXiv
Golse, François; Gualdani, Maria Pia; Imbert, Cyril; Vasseur, Alexis Partial regularity in time for the space-homogeneous Landau equation with Coulomb potential. (English. French summary) Zbl 1503.35123 Ann. Sci. Éc. Norm. Supér. (4) 55, No. 6, 1575-1611 (2022). MSC: 35Q20 35B44 35B65 35K55 35K61 35D30 35R09 45K05 PDF BibTeX XML Cite \textit{F. Golse} et al., Ann. Sci. Éc. Norm. Supér. (4) 55, No. 6, 1575--1611 (2022; Zbl 1503.35123) Full Text: DOI arXiv
Funaro, Daniele How and why non smooth solutions of the 3D Navier-Stokes equations could possibly develop. (English) Zbl 1502.35079 Numer. Math. 152, No. 4, 789-817 (2022). MSC: 35Q30 76D05 35B44 35B65 PDF BibTeX XML Cite \textit{D. Funaro}, Numer. Math. 152, No. 4, 789--817 (2022; Zbl 1502.35079) Full Text: DOI arXiv
Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components. (English) Zbl 1498.35379 Sib. Èlektron. Mat. Izv. 19, No. 1, 309-315 (2022). MSC: 35Q30 35B65 35K92 35D30 76D03 PDF BibTeX XML Cite \textit{A. M. Alghamdi} et al., Sib. Èlektron. Mat. Izv. 19, No. 1, 309--315 (2022; Zbl 1498.35379) Full Text: DOI
Li, YanYan; Yang, Zhuolun Regular solutions of the stationary Navier-Stokes equations on high dimensional Euclidean space. (English) Zbl 1504.35236 Commun. Math. Phys. 394, No. 2, 711-734 (2022). MSC: 35Q30 76D05 76D07 35B65 35D30 35A01 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Z. Yang}, Commun. Math. Phys. 394, No. 2, 711--734 (2022; Zbl 1504.35236) Full Text: DOI arXiv
Cheskidov, Alexey; Luo, Xiaoyutao Sharp nonuniqueness for the Navier-Stokes equations. (English) Zbl 1504.35221 Invent. Math. 229, No. 3, 987-1054 (2022). MSC: 35Q30 76D05 35D30 35A02 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{X. Luo}, Invent. Math. 229, No. 3, 987--1054 (2022; Zbl 1504.35221) Full Text: DOI arXiv
Wang, Yanqing; Wei, Wei; Wu, Gang; Ye, Yulin On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces. (English) Zbl 1513.76062 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 2, 671-689 (2022). MSC: 76D03 76D05 35B33 35Q35 35Q30 PDF BibTeX XML Cite \textit{Y. Wang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 2, 671--689 (2022; Zbl 1513.76062) Full Text: DOI arXiv
Liu, Qiao; Yang, Yixin Global well-posedness of 3d axisymmetric MHD-Boussinesq system with nonzero swirl. (English) Zbl 1491.35343 J. Math. Fluid Mech. 24, No. 3, Paper No. 72, 22 p. (2022). MSC: 35Q35 76D03 76W05 35B65 35B07 35A01 35A02 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{Y. Yang}, J. Math. Fluid Mech. 24, No. 3, Paper No. 72, 22 p. (2022; Zbl 1491.35343) Full Text: DOI
Wu, Bian Partially regular weak solutions of the stationary Navier-Stokes equations in dimension 6. (English) Zbl 1491.35324 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 152, 25 p. (2022). MSC: 35Q30 76D05 76W05 35D30 28A78 35R06 PDF BibTeX XML Cite \textit{B. Wu}, Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 152, 25 p. (2022; Zbl 1491.35324) Full Text: DOI arXiv
Li, Zijin; Pan, Xinghong One component regularity criteria for the axially symmetric MHD-Boussinesq system. (English) Zbl 1490.35337 Discrete Contin. Dyn. Syst. 42, No. 5, 2333-2353 (2022). MSC: 35Q35 76D03 76W05 35B65 35B07 35B44 35D35 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X. Pan}, Discrete Contin. Dyn. Syst. 42, No. 5, 2333--2353 (2022; Zbl 1490.35337) Full Text: DOI arXiv
Li, Zijin Critical conditions on \(w^\theta\) imply the regularity of axially symmetric MHD-Boussinesq systems. (English) Zbl 1489.35211 J. Math. Anal. Appl. 505, No. 1, Article ID 125451, 18 p. (2022). MSC: 35Q35 76W05 35B65 35D35 35B44 PDF BibTeX XML Cite \textit{Z. Li}, J. Math. Anal. Appl. 505, No. 1, Article ID 125451, 18 p. (2022; Zbl 1489.35211) Full Text: DOI
Wang, Yanqing; Yuan, Baoquan; Zhao, Jiefeng; Zhou, Daoguo On the regularity of weak solutions of the MHD equations in \(BMO^{\text bf{-}1}\) and \(\dot{B}_{\mathbf{\infty}, \mathbf{\infty}}^{-1}\). (English) Zbl 1498.35444 J. Math. Phys. 62, No. 9, Article ID 091509, 13 p. (2021). MSC: 35Q35 76W05 35D30 35B65 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Math. Phys. 62, No. 9, Article ID 091509, 13 p. (2021; Zbl 1498.35444) Full Text: DOI
Chamorro, Diego; He, Jiao Regularity theory for the dissipative solutions of the magnetohydrodynamic equations. (English) Zbl 1473.76074 SIAM J. Math. Anal. 53, No. 5, 5288-5321 (2021). MSC: 76W05 35Q35 35Q60 PDF BibTeX XML Cite \textit{D. Chamorro} and \textit{J. He}, SIAM J. Math. Anal. 53, No. 5, 5288--5321 (2021; Zbl 1473.76074) Full Text: DOI arXiv
Wang, Yanqing; Wei, Wei; Yu, Huan \(\varepsilon\)-regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces. (English) Zbl 1483.76019 J. Evol. Equ. 21, No. 2, 1627-1650 (2021). Reviewer: Shangkun Weng (Pohang) MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Evol. Equ. 21, No. 2, 1627--1650 (2021; Zbl 1483.76019) Full Text: DOI arXiv
Liu, Xiangao; Liu, Yueli; Liu, Zixuan A remark on regularity of liquid crystal equations in critical Lorentz spaces. (English) Zbl 1468.76009 Ann. Mat. Pura Appl. (4) 200, No. 4, 1709-1734 (2021). MSC: 76A15 35Q35 PDF BibTeX XML Cite \textit{X. Liu} et al., Ann. Mat. Pura Appl. (4) 200, No. 4, 1709--1734 (2021; Zbl 1468.76009) Full Text: DOI
Barker, Tobias; Prange, Christophe Quantitative regularity for the Navier-Stokes equations via spatial concentration. (English) Zbl 1472.35266 Commun. Math. Phys. 385, No. 2, 717-792 (2021). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35Q30 76D05 35B45 35B44 35B65 PDF BibTeX XML Cite \textit{T. Barker} and \textit{C. Prange}, Commun. Math. Phys. 385, No. 2, 717--792 (2021; Zbl 1472.35266) Full Text: DOI arXiv
Chen, Ya-zhou; Li, Hai-liang; Shi, Xiao-ding Partial regularity of suitable weak solutions to the system of the incompressible shear-thinning flow. (English) Zbl 1464.35214 Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 348-363 (2021). MSC: 35Q35 35B40 76N10 76A05 35B65 35D30 PDF BibTeX XML Cite \textit{Y.-z. Chen} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 348--363 (2021; Zbl 1464.35214) Full Text: DOI
Lévy, Guillaume Retracted: A uniqueness lemma with applications to regularization and incompressible fluid mechanics. (English) Zbl 1464.35185 Sci. China, Math. 64, No. 4, 711-724 (2021); retraction note ibid. 64, No. 8, 1935 (2021). MSC: 35Q30 35Q31 35Q35 35D30 35Q49 35A01 76D05 PDF BibTeX XML Cite \textit{G. Lévy}, Sci. China, Math. 64, No. 4, 711--724 (2021; Zbl 1464.35185) Full Text: DOI
Chamorro, Diego; Cortez, Fernando; He, Jiao; Jarrín, Oscar On the local regularity theory for the magnetohydrodynamic equations. (English) Zbl 1460.35278 Doc. Math. 26, 125-148 (2021). MSC: 35Q35 42B37 35B65 35D30 76W05 PDF BibTeX XML Cite \textit{D. Chamorro} et al., Doc. Math. 26, 125--148 (2021; Zbl 1460.35278) Full Text: DOI arXiv
Wu, Bian Partially regular weak solutions of the Navier-Stokes equations in \(\mathbb{R}^4 \times [0,\infty[\). (English) Zbl 1513.35440 Arch. Ration. Mech. Anal. 239, No. 3, 1771-1808 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{B. Wu}, Arch. Ration. Mech. Anal. 239, No. 3, 1771--1808 (2021; Zbl 1513.35440) Full Text: DOI arXiv
Chamorro, Diego; He, Jiao On the partial regularity theory for the MHD equations. (English) Zbl 1458.35094 J. Math. Anal. Appl. 494, No. 1, Article ID 124449, 38 p. (2021). MSC: 35B65 76W05 35Q35 PDF BibTeX XML Cite \textit{D. Chamorro} and \textit{J. He}, J. Math. Anal. Appl. 494, No. 1, Article ID 124449, 38 p. (2021; Zbl 1458.35094) Full Text: DOI arXiv
Chen, Eric Partial regularity for the steady hyperdissipative fractional Navier-Stokes equations. (English) Zbl 1456.35058 Commun. Math. Phys. 381, No. 1, 1-31 (2021). MSC: 35B65 35Q30 35R11 PDF BibTeX XML Cite \textit{E. Chen}, Commun. Math. Phys. 381, No. 1, 1--31 (2021; Zbl 1456.35058) Full Text: DOI arXiv
Dong, Hongjie; Phan, Tuoc Mixed-norm \(L_p\)-estimates for non-stationary Stokes systems with singular VMO coefficients and applications. (English) Zbl 07297753 J. Differ. Equations 276, 342-367 (2021). MSC: 76D03 76D05 76D07 35K67 35K40 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Phan}, J. Differ. Equations 276, 342--367 (2021; Zbl 07297753) Full Text: DOI arXiv
Robinson, James C. The Navier-Stokes regularity problem. (English) Zbl 1462.35251 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2174, Article ID 20190526, 13 p. (2020). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{J. C. Robinson}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2174, Article ID 20190526, 13 p. (2020; Zbl 1462.35251) Full Text: DOI
Gala, Sadek On the improved regularity criterion of the solutions to the Navier-Stokes equations. (English) Zbl 1452.35132 Commun. Korean Math. Soc. 35, No. 1, 339-345 (2020). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{S. Gala}, Commun. Korean Math. Soc. 35, No. 1, 339--345 (2020; Zbl 1452.35132) Full Text: DOI
Robinson, James C. Partial regularity for the 3D Navier-Stokes equations. (English) Zbl 1442.35309 Galdi, Giovanni P. (ed.) et al., Mathematical analysis of the Navier-Stokes equations. Lecture notes given at the CIME school on mathematical analysis of the Navier-Stokes equations: foundations and overview of basic open problems, Cetraro, Italy, September 4–8, 2017. Cham: Springer. Lect. Notes Math. 2254, 147-192 (2020). MSC: 35Q30 76D05 35B65 35D30 35D35 PDF BibTeX XML Cite \textit{J. C. Robinson}, Lect. Notes Math. 2254, 147--192 (2020; Zbl 1442.35309) Full Text: DOI
Dong, Hongjie; Wang, Kunrui Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. (English) Zbl 1442.35299 Discrete Contin. Dyn. Syst. 40, No. 9, 5289-5323 (2020). MSC: 35Q30 35B65 76D05 76D03 35D30 PDF BibTeX XML Cite \textit{H. Dong} and \textit{K. Wang}, Discrete Contin. Dyn. Syst. 40, No. 9, 5289--5323 (2020; Zbl 1442.35299) Full Text: DOI arXiv
Ji, Xiang; Wang, Yanqing; Wei, Wei New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. (English) Zbl 1433.76033 J. Math. Fluid Mech. 22, No. 1, Paper No. 13, 8 p. (2020). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{X. Ji} et al., J. Math. Fluid Mech. 22, No. 1, Paper No. 13, 8 p. (2020; Zbl 1433.76033) Full Text: DOI arXiv
Yu, Huan An anisotropic Sobolev-Hardy inequality with application to 3D axisymmetric Navier-Stokes equations. (English) Zbl 1433.35247 Appl. Anal. 99, No. 2, 313-325 (2020). MSC: 35Q30 42B25 46E99 35A01 35A02 76D05 PDF BibTeX XML Cite \textit{H. Yu}, Appl. Anal. 99, No. 2, 313--325 (2020; Zbl 1433.35247) Full Text: DOI
Luo, Xiaoyutao On the possible time singularities for the 3D Navier-Stokes equations. (English) Zbl 1451.76036 Physica D 395, 37-42 (2019). MSC: 76D03 76D05 35A21 PDF BibTeX XML Cite \textit{X. Luo}, Physica D 395, 37--42 (2019; Zbl 1451.76036) Full Text: DOI arXiv
He, Cheng; Wang, Yanqing; Zhou, Daoguo New \(\varepsilon \)-regularity criteria of suitable weak solutions of the 3D Navier-Stokes equations at one scale. (English) Zbl 1427.35177 J. Nonlinear Sci. 29, No. 6, 2681-2698 (2019). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{C. He} et al., J. Nonlinear Sci. 29, No. 6, 2681--2698 (2019; Zbl 1427.35177) Full Text: DOI arXiv
Chen, Hui; Fang, Daoyuan; Zhang, Ting The global solutions of axisymmetric Navier-Stokes equations with anisotropic initial data. (English) Zbl 1431.35102 Z. Angew. Math. Phys. 70, No. 6, Paper No. 166, 14 p. (2019). MSC: 35Q30 76D03 76D05 35B65 35B07 PDF BibTeX XML Cite \textit{H. Chen} et al., Z. Angew. Math. Phys. 70, No. 6, Paper No. 166, 14 p. (2019; Zbl 1431.35102) Full Text: DOI
Liu, Xian-Gao; Min, Jianzhong; Zhang, Xiaotao \(L^{3,\infty}\) solutions of the liquid crystals system. (English) Zbl 1426.76045 J. Differ. Equations 267, No. 4, 2643-2670 (2019). Reviewer: Alain Brillard (Riedisheim) MSC: 76A15 35Q35 PDF BibTeX XML Cite \textit{X.-G. Liu} et al., J. Differ. Equations 267, No. 4, 2643--2670 (2019; Zbl 1426.76045) Full Text: DOI
Jiu, Quansen; Wang, Yanqing; Zhou, Daoguo On Wolf’s regularity criterion of suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1411.76022 J. Math. Fluid Mech. 21, No. 2, Paper No. 22, 16 p. (2019). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Q. Jiu} et al., J. Math. Fluid Mech. 21, No. 2, Paper No. 22, 16 p. (2019; Zbl 1411.76022) Full Text: DOI arXiv
Ma, Liangliang Global regularity results for the \(2\frac{1}{2}\)D magnetic Bénard system with mixed partial viscosity. (English) Zbl 1414.35172 Appl. Anal. 98, No. 6, 1143-1164 (2019). MSC: 35Q35 35A01 35B65 76D03 76R10 78A25 76W05 PDF BibTeX XML Cite \textit{L. Ma}, Appl. Anal. 98, No. 6, 1143--1164 (2019; Zbl 1414.35172) Full Text: DOI
Ożański, Wojciech S. A sufficient integral condition for local regularity of solutions to the surface growth model. (English) Zbl 1410.35099 J. Funct. Anal. 276, No. 10, 2990-3013 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35D30 35B65 PDF BibTeX XML Cite \textit{W. S. Ożański}, J. Funct. Anal. 276, No. 10, 2990--3013 (2019; Zbl 1410.35099) Full Text: DOI arXiv Link
Han, Bin; Lei, Zhen; Li, Dong; Zhao, Na Sharp one component regularity for Navier-Stokes. (English) Zbl 1412.76021 Arch. Ration. Mech. Anal. 231, No. 2, 939-970 (2019). Reviewer: Jürgen Socolowsky (Brandenburg an der Havel) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{B. Han} et al., Arch. Ration. Mech. Anal. 231, No. 2, 939--970 (2019; Zbl 1412.76021) Full Text: DOI arXiv
Seregin, G. A.; Shilkin, T. N. Liouville-type theorems for the Navier-Stokes equations. (English. Russian original) Zbl 1416.35191 Russ. Math. Surv. 73, No. 4, 661-724 (2018); translation from Usp. Mat. Nauk 73, No. 4, 103-170 (2018). MSC: 35Q30 35B53 35D30 76D05 PDF BibTeX XML Cite \textit{G. A. Seregin} and \textit{T. N. Shilkin}, Russ. Math. Surv. 73, No. 4, 661--724 (2018; Zbl 1416.35191); translation from Usp. Mat. Nauk 73, No. 4, 103--170 (2018) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang; Zhou, Daoguo Some interior regularity criteria involving two components for weak solutions to the 3D Navier-Stokes equations. (English) Zbl 1404.76069 J. Math. Fluid Mech. 20, No. 4, 2147-2159 (2018). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Math. Fluid Mech. 20, No. 4, 2147--2159 (2018; Zbl 1404.76069) Full Text: DOI
Nakao, Kohei; Taniuchi, Yasushi Brezis-Gallouet-Wainger type inequality and its application to the Navier-Stokes equations. (English) Zbl 1404.35329 Danchin, Raphaël (ed.) et al., Mathematical analysis in fluid mechanics: selected recent results. International conference on vorticity, rotation and symmetry (IV) – complex fluids and the issue of regularity, CIRM, Luminy, Marseille, France, May 8–12, 2017. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3646-9/pbk; 978-1-4704-4807-3/ebook). Contemporary Mathematics 710, 211-222 (2018). MSC: 35Q30 35Q35 76D05 35B65 35R45 PDF BibTeX XML Cite \textit{K. Nakao} and \textit{Y. Taniuchi}, Contemp. Math. 710, 211--222 (2018; Zbl 1404.35329) Full Text: DOI
Ren, Wei; Wang, Yanqing; Wu, Gang Remarks on the singular set of suitable weak solutions for the three-dimensional Navier-Stokes equations. (English) Zbl 1401.35244 J. Math. Anal. Appl. 467, No. 2, 807-824 (2018). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q30 35D30 76D05 PDF BibTeX XML Cite \textit{W. Ren} et al., J. Math. Anal. Appl. 467, No. 2, 807--824 (2018; Zbl 1401.35244) Full Text: DOI
Liu, Xian-gao; Zhang, Xiaotao Liouville theorem for MHD system and its applications. (English) Zbl 1397.35214 Commun. Pure Appl. Anal. 17, No. 6, 2329-2350 (2018). MSC: 35Q35 76W05 35B65 35D30 35B07 PDF BibTeX XML Cite \textit{X.-g. Liu} and \textit{X. Zhang}, Commun. Pure Appl. Anal. 17, No. 6, 2329--2350 (2018; Zbl 1397.35214) Full Text: DOI
Lévy, Guillaume On an anisotropic Serrin criterion for weak solutions of the Navier-Stokes equations. (Sur un critère de Serrin anisotrope pour des solutions faibles de l’équation de Navier-Stokes.) (English. French summary) Zbl 1406.35230 J. Math. Pures Appl. (9) 117, 123-145 (2018). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{G. Lévy}, J. Math. Pures Appl. (9) 117, 123--145 (2018; Zbl 1406.35230) Full Text: DOI arXiv
Wang, Wendong; Zhang, Liqun; Zhang, Zhifei On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. (English) Zbl 1397.35184 Discrete Contin. Dyn. Syst. 38, No. 5, 2609-2627 (2018). MSC: 35Q30 35B65 76D05 35B44 35D30 PDF BibTeX XML Cite \textit{W. Wang} et al., Discrete Contin. Dyn. Syst. 38, No. 5, 2609--2627 (2018; Zbl 1397.35184) Full Text: DOI arXiv
Wang, Yuzhao; Xiao, Jie A Liouville problem for the stationary fractional Navier-Stokes-Poisson system. (English) Zbl 1394.35332 J. Math. Fluid Mech. 20, No. 2, 485-498 (2018). MSC: 35Q30 76D05 35R11 35D30 35A02 26A33 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{J. Xiao}, J. Math. Fluid Mech. 20, No. 2, 485--498 (2018; Zbl 1394.35332) Full Text: DOI
Chang, Tongkeun; Kang, Kyungkeun Estimates of anisotropic Sobolev spaces with mixed norms for the Stokes system in a half-space. (English) Zbl 1384.35056 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 64, No. 1, 47-82 (2018). MSC: 35Q30 35K51 76D07 76D05 PDF BibTeX XML Cite \textit{T. Chang} and \textit{K. Kang}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 64, No. 1, 47--82 (2018; Zbl 1384.35056) Full Text: DOI arXiv
Lévy, Guillaume A uniqueness lemma with applications to regularization and incompressible fluid mechanics. (English) Zbl 1516.35007 Commun. Contemp. Math. 20, No. 3, Article ID 1750048, 18 p. (2018). MSC: 35A02 35F10 35Q49 PDF BibTeX XML Cite \textit{G. Lévy}, Commun. Contemp. Math. 20, No. 3, Article ID 1750048, 18 p. (2018; Zbl 1516.35007) Full Text: DOI arXiv
Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther The role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. (English) Zbl 1382.35185 Arch. Ration. Mech. Anal. 228, No. 1, 237-277 (2018). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{D. Chamorro} et al., Arch. Ration. Mech. Anal. 228, No. 1, 237--277 (2018; Zbl 1382.35185) Full Text: DOI arXiv
Liu, Jitao; Wang, Wendong Boundary regularity criteria for the 6D steady Navier-Stokes and MHD equations. (English) Zbl 1378.35221 J. Differ. Equations 264, No. 3, 2351-2376 (2018). MSC: 35Q30 76D03 35D30 76W05 76D05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{W. Wang}, J. Differ. Equations 264, No. 3, 2351--2376 (2018; Zbl 1378.35221) Full Text: DOI arXiv
Liu, Qiao; Dai, Guowei On the 3D Navier-Stokes equations with regularity in pressure. (English) Zbl 1378.35222 J. Math. Anal. Appl. 458, No. 1, 497-507 (2018). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{G. Dai}, J. Math. Anal. Appl. 458, No. 1, 497--507 (2018; Zbl 1378.35222) Full Text: DOI
Alghamdi, Ahmad Mohammed; Gala, Sadek; Ragusa, Maria Alessandra A regularity criterion of weak solutions to the 3D Boussinesq equations. (English) Zbl 1427.35194 AIMS Math. 2, No. 3, 451-457 (2017). MSC: 35Q35 76D03 35B65 35B45 35D30 PDF BibTeX XML Cite \textit{A. M. Alghamdi} et al., AIMS Math. 2, No. 3, 451--457 (2017; Zbl 1427.35194) Full Text: DOI
Lorenz, Jens; Zingano, Paulo R. Properties at potential blow-up times for the incompressible Navier-Stokes equations. (English) Zbl 1424.35120 Bol. Soc. Parana. Mat. (3) 35, No. 2, 127-158 (2017). MSC: 35G20 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J. Lorenz} and \textit{P. R. Zingano}, Bol. Soc. Parana. Mat. (3) 35, No. 2, 127--158 (2017; Zbl 1424.35120) Full Text: Link
Wang, WenDong; Zhang, ZhiFei Blow-up of critical norms for the 3-D Navier-Stokes equations. (English) Zbl 1387.35471 Sci. China, Math. 60, No. 4, 637-650 (2017). MSC: 35Q30 76D05 46E35 35B44 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, Sci. China, Math. 60, No. 4, 637--650 (2017; Zbl 1387.35471) Full Text: DOI arXiv
Guo, Xiao Li; Men, Yue Yang On partial regularity of suitable weak solutions to the stationary fractional Navier-Stokes equations in dimension four and five. (English) Zbl 1378.76019 Acta Math. Sin., Engl. Ser. 33, No. 12, 1632-1646 (2017). MSC: 76D03 76D05 35B30 35Q35 PDF BibTeX XML Cite \textit{X. L. Guo} and \textit{Y. Y. Men}, Acta Math. Sin., Engl. Ser. 33, No. 12, 1632--1646 (2017; Zbl 1378.76019) Full Text: DOI
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed Localized anisotropic regularity conditions for the Navier-Stokes equations. (English) Zbl 1379.35213 J. Nonlinear Sci. 27, No. 6, 1725-1742 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Nonlinear Sci. 27, No. 6, 1725--1742 (2017; Zbl 1379.35213) Full Text: DOI
Siljander, Juhana; Urbano, José Miguel On the interior regularity of weak solutions to the 2-D incompressible Euler equations. (English) Zbl 1379.35228 Calc. Var. Partial Differ. Equ. 56, No. 5, Paper No. 126, 19 p. (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q31 35B65 35Q30 76B03 PDF BibTeX XML Cite \textit{J. Siljander} and \textit{J. M. Urbano}, Calc. Var. Partial Differ. Equ. 56, No. 5, Paper No. 126, 19 p. (2017; Zbl 1379.35228) Full Text: DOI arXiv Link
Barker, Tobias Local boundary regularity for the Navier-Stokes equations in non-endpoint borderline Lorentz spaces. (English) Zbl 1373.35062 J. Math. Sci., New York 224, No. 3, 391-413 (2017) and Zap. Nauchn. Semin. POMI 444, 15-46 (2016). MSC: 35B65 35Q30 PDF BibTeX XML Cite \textit{T. Barker}, J. Math. Sci., New York 224, No. 3, 391--413 (2017; Zbl 1373.35062) Full Text: DOI arXiv
Fang, Daoyuan; Liu, Chun; Qian, Chenyin On partial regularity problem for 3D Boussinesq equations. (English) Zbl 1372.35233 J. Differ. Equations 263, No. 7, 4156-4221 (2017). MSC: 35Q35 76B03 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{D. Fang} et al., J. Differ. Equations 263, No. 7, 4156--4221 (2017; Zbl 1372.35233) Full Text: DOI
Larios, Adam; Pei, Yuan On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion. (English) Zbl 1368.35221 J. Differ. Equations 263, No. 2, 1419-1450 (2017). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35Q35 35B65 35A01 35K51 35Q86 76B03 76D03 76W05 PDF BibTeX XML Cite \textit{A. Larios} and \textit{Y. Pei}, J. Differ. Equations 263, No. 2, 1419--1450 (2017; Zbl 1368.35221) Full Text: DOI arXiv
Zhang, Ting; Fang, Daoyuan; Chen, Hui Regularity of 3D axisymmetric Navier-Stokes equations. (English) Zbl 1364.35114 Discrete Contin. Dyn. Syst. 37, No. 4, 1923-1939 (2017). MSC: 35K15 35K55 35Q35 76A05 35B07 PDF BibTeX XML Cite \textit{T. Zhang} et al., Discrete Contin. Dyn. Syst. 37, No. 4, 1923--1939 (2017; Zbl 1364.35114) Full Text: DOI arXiv
Gala, Sadek; Ragusa, Maria Alessandra On the regularity criterion for the Navier-Stokes equations in terms of one directional derivative. (English) Zbl 1364.35237 Asian-Eur. J. Math. 10, No. 1, Article ID 1750012, 6 p. (2017). MSC: 35Q30 76F65 35B65 35D30 PDF BibTeX XML Cite \textit{S. Gala} and \textit{M. A. Ragusa}, Asian-Eur. J. Math. 10, No. 1, Article ID 1750012, 6 p. (2017; Zbl 1364.35237) Full Text: DOI
Miao, Changxing; Wang, Yanqing Regularity conditions for suitable weak solutions of the Navier-Stokes system from its rotation form. (English) Zbl 1364.35243 Pac. J. Math. 288, No. 1, 189-215 (2017). MSC: 35Q30 35B65 35D30 76U05 76D05 PDF BibTeX XML Cite \textit{C. Miao} and \textit{Y. Wang}, Pac. J. Math. 288, No. 1, 189--215 (2017; Zbl 1364.35243) Full Text: DOI
Tran, Chuong V.; Yu, Xinwei Regularity of Navier-Stokes flows with bounds for the pressure. (English) Zbl 1360.35151 Appl. Math. Lett. 67, 21-27 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{C. V. Tran} and \textit{X. Yu}, Appl. Math. Lett. 67, 21--27 (2017; Zbl 1360.35151) Full Text: DOI
Tran, Chuong V.; Yu, Xinwei Note on Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier-Stokes equations. (English) Zbl 1355.76017 J. Math. Phys. 58, No. 1, 011501, 10 p. (2017). MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{C. V. Tran} and \textit{X. Yu}, J. Math. Phys. 58, No. 1, 011501, 10 p. (2017; Zbl 1355.76017) Full Text: DOI Link
Mechdene, Mohamed; Gala, Sadek; Guo, Zhengguang; Ragusa, Alessandra Maria Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure. (English) Zbl 1362.35237 Z. Angew. Math. Phys. 67, No. 5, Article ID 120, 10 p. (2016). MSC: 35Q35 76D03 35B65 PDF BibTeX XML Cite \textit{M. Mechdene} et al., Z. Angew. Math. Phys. 67, No. 5, Article ID 120, 10 p. (2016; Zbl 1362.35237) Full Text: DOI
Bae, Hyeong-Ohk; Wolf, Jörg A local regularity condition involving two velocity components of Serrin-type for the Navier-Stokes equations. (Une condition de la régularité locale impliquant deux composantes de la vitesse de type Serrin pour les équations de Navier-Stokes.) (English. French summary) Zbl 1359.35123 C. R., Math., Acad. Sci. Paris 354, No. 2, 167-174 (2016). MSC: 35Q30 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{H.-O. Bae} and \textit{J. Wolf}, C. R., Math., Acad. Sci. Paris 354, No. 2, 167--174 (2016; Zbl 1359.35123) Full Text: DOI
Wang, Yanqing; Wu, Gang; Zhou, Daoguo Refined regularity class of suitable weak solutions to the 3D magnetohydrodynamics equations with an application. (English) Zbl 1354.76037 Z. Angew. Math. Phys. 67, No. 6, Article ID 136, 22 p. (2016). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Y. Wang} et al., Z. Angew. Math. Phys. 67, No. 6, Article ID 136, 22 p. (2016; Zbl 1354.76037) Full Text: DOI
Zhang, Xiaotao; Wang, Kui; Min, Jianzhong; Liu, Xian-Gao Serrin’s regularity results for the incompressible liquid crystals system. (English) Zbl 1351.35154 Discrete Contin. Dyn. Syst. 36, No. 10, 5579-5594 (2016). MSC: 35Q35 76A15 35B65 PDF BibTeX XML Cite \textit{X. Zhang} et al., Discrete Contin. Dyn. Syst. 36, No. 10, 5579--5594 (2016; Zbl 1351.35154) Full Text: DOI
Li, Yinghua; Ding, Shijin; Huang, Mingxia Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. (English) Zbl 1346.76195 Discrete Contin. Dyn. Syst., Ser. B 21, No. 5, 1507-1523 (2016). MSC: 76T10 35Q30 35B44 PDF BibTeX XML Cite \textit{Y. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 5, 1507--1523 (2016; Zbl 1346.76195) Full Text: DOI
D’Ancona, Piero; Lucà, Renato On the regularity set and angular integrability for the Navier-Stokes equation. (English) Zbl 1350.35143 Arch. Ration. Mech. Anal. 221, No. 3, 1255-1284 (2016). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 76D05 35D30 35A20 35B65 PDF BibTeX XML Cite \textit{P. D'Ancona} and \textit{R. Lucà}, Arch. Ration. Mech. Anal. 221, No. 3, 1255--1284 (2016; Zbl 1350.35143) Full Text: DOI arXiv
Gala, Sadek; Ragusa, Maria Alessandra Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. (English) Zbl 1336.35289 Appl. Anal. 95, No. 6, 1271-1279 (2016). MSC: 35Q35 76D03 PDF BibTeX XML Cite \textit{S. Gala} and \textit{M. A. Ragusa}, Appl. Anal. 95, No. 6, 1271--1279 (2016; Zbl 1336.35289) Full Text: DOI
Duan, Zhiwen; Han, Shuxia; Sun, Peipei On unique continuation for Navier-Stokes equations. (English) Zbl 1356.35158 Abstr. Appl. Anal. 2015, Article ID 597946, 16 p. (2015). MSC: 35Q30 35B60 76D05 PDF BibTeX XML Cite \textit{Z. Duan} et al., Abstr. Appl. Anal. 2015, Article ID 597946, 16 p. (2015; Zbl 1356.35158) Full Text: DOI
Wang, Ke-chuang A remark on regularity criterion for the Navier-Stokes equations in a bounded domain of \(\mathbb R^N\). (English) Zbl 1381.35123 Math. Phys. Anal. Geom. 18, No. 1, Article ID 5, 8 p. (2015). MSC: 35Q30 35B45 35B65 76D05 PDF BibTeX XML Cite \textit{K.-c. Wang}, Math. Phys. Anal. Geom. 18, No. 1, Article ID 5, 8 p. (2015; Zbl 1381.35123) Full Text: DOI
Phuc, Nguyen Cong The Navier-Stokes equations in nonendpoint borderline Lorentz spaces. (English) Zbl 1326.35249 J. Math. Fluid Mech. 17, No. 4, 741-760 (2015). MSC: 35Q30 PDF BibTeX XML Cite \textit{N. C. Phuc}, J. Math. Fluid Mech. 17, No. 4, 741--760 (2015; Zbl 1326.35249) Full Text: DOI arXiv
Dao Quang Khai; Nguyen Minh Tri On the Hausdorff dimension of the singular set in time for weak solutions to the non-stationary Navier-Stokes equation on torus. (English) Zbl 1326.35242 Vietnam J. Math. 43, No. 2, 283-295 (2015). Reviewer: Jürgen Socolowsky (Brandenburg an der Havel) MSC: 35Q30 76D05 76N10 35D30 35B65 PDF BibTeX XML Cite \textit{Dao Quang Khai} and \textit{Nguyen Minh Tri}, Vietnam J. Math. 43, No. 2, 283--295 (2015; Zbl 1326.35242) Full Text: DOI
Wolf, Jörg On the local regularity of suitable weak solutions to the generalized Navier-Stokes equations. (English) Zbl 1323.35135 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 1, 149-171 (2015). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 35Q30 76D05 35B65 76N10 76A05 PDF BibTeX XML Cite \textit{J. Wolf}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 1, 149--171 (2015; Zbl 1323.35135) Full Text: DOI
Gu, Xumin Regularity criteria for suitable weak solutions to the four dimensional incompressible magneto-hydrodynamic equations near boundary. (English) Zbl 1317.35198 J. Differ. Equations 259, No. 4, 1354-1378 (2015). MSC: 35Q35 76W05 35B65 28A78 PDF BibTeX XML Cite \textit{X. Gu}, J. Differ. Equations 259, No. 4, 1354--1378 (2015; Zbl 1317.35198) Full Text: DOI arXiv
Kang, Kyungkeun; Kim, Jae-Myoung Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. (English) Zbl 1299.35236 J. Funct. Anal. 266, No. 1, 99-120 (2014). MSC: 35Q35 76W05 PDF BibTeX XML Cite \textit{K. Kang} and \textit{J.-M. Kim}, J. Funct. Anal. 266, No. 1, 99--120 (2014; Zbl 1299.35236) Full Text: DOI arXiv
Wang, Wendong; Zhang, Zhifei On the interior regularity criteria and the number of singular points to the Navier-Stokes equations. (English) Zbl 1304.35510 J. Anal. Math. 123, 139-170 (2014). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, J. Anal. Math. 123, 139--170 (2014; Zbl 1304.35510) Full Text: DOI arXiv
Choi, Kyudong; Vasseur, Alexis F. Estimates on fractional higher derivatives of weak solutions for the Navier-Stokes equations. (English) Zbl 1297.76047 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31, No. 5, 899-945 (2014). MSC: 76D05 35Q30 PDF BibTeX XML Cite \textit{K. Choi} and \textit{A. F. Vasseur}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31, No. 5, 899--945 (2014; Zbl 1297.76047) Full Text: DOI arXiv
Dong, Hongjie; Gu, Xumin Boundary partial regularity for the high dimensional Navier-Stokes equations. (English) Zbl 1300.35070 J. Funct. Anal. 267, No. 8, 2606-2637 (2014). MSC: 35Q30 35B65 76D05 35D30 28A78 PDF BibTeX XML Cite \textit{H. Dong} and \textit{X. Gu}, J. Funct. Anal. 267, No. 8, 2606--2637 (2014; Zbl 1300.35070) Full Text: DOI arXiv
Bosia, Stefano; Conti, Monica; Pata, Vittorino A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient. (English) Zbl 1293.35196 Cent. Eur. J. Math. 12, No. 7, 1015-1025 (2014). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{S. Bosia} et al., Cent. Eur. J. Math. 12, No. 7, 1015--1025 (2014; Zbl 1293.35196) Full Text: DOI Link
Lucà, Renato Regularity criteria with angular integrability for the Navier-Stokes equation. (English) Zbl 1293.35212 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105, 24-40 (2014). MSC: 35Q30 35B65 35D30 PDF BibTeX XML Cite \textit{R. Lucà}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105, 24--40 (2014; Zbl 1293.35212) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations. (English) Zbl 1283.35069 J. Differ. Equations 256, No. 3, 1224-1249 (2014). MSC: 35Q30 35Q35 76D05 76B03 35D30 35B65 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{G. Wu}, J. Differ. Equations 256, No. 3, 1224--1249 (2014; Zbl 1283.35069) Full Text: DOI
Seregin, Gregory Selected topics of local regularity theory for Navier-Stokes equations. (English) Zbl 1301.35094 Flandoli, Franco (ed.) et al., Topics in mathematical fluid mechanics. Notes of the CIME course, Cetraro, Italy, September 2010. Berlin: Springer; Florence: Fondazione CIME (ISBN 978-3-642-36296-5/pbk; 978-3-642-36297-2/ebook). Lecture Notes in Mathematics 2073. CIME Foundation Subseries, 239-313 (2013). MSC: 35Q30 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{G. Seregin}, Lect. Notes Math. 2073, 239--313 (2013; Zbl 1301.35094) Full Text: DOI
Foxall, Eric; Ibrahim, Slim; Yoneda, Tsuyoshi Streamlines concentration and application to the incompressible Navier-Stokes equations. (English) Zbl 1273.35208 Tohoku Math. J. (2) 65, No. 2, 273-279 (2013). MSC: 35Q30 76D05 76M99 PDF BibTeX XML Cite \textit{E. Foxall} et al., Tôhoku Math. J. (2) 65, No. 2, 273--279 (2013; Zbl 1273.35208) Full Text: DOI arXiv Euclid
Gala, Sadek Remarks on regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure. (English) Zbl 1284.35313 Appl. Anal. 92, No. 1, 96-103 (2013). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{S. Gala}, Appl. Anal. 92, No. 1, 96--103 (2013; Zbl 1284.35313) Full Text: DOI
Guo, Zhengguang; Wittwer, Peter; Wang, Weiming Regularity issue of the Navier-Stokes equations involving the combination of pressure and velocity field. (English) Zbl 1280.35091 Acta Appl. Math. 123, No. 1, 99-112 (2013). MSC: 35Q30 35B45 35B65 76D05 PDF BibTeX XML Cite \textit{Z. Guo} et al., Acta Appl. Math. 123, No. 1, 99--112 (2013; Zbl 1280.35091) Full Text: DOI
Zhikov, V. V.; Pastukhova, S. E. On the Navier-Stokes equations: existence theorems and energy equalities. (English. Russian original) Zbl 1303.35062 Proc. Steklov Inst. Math. 278, 67-87 (2012); translation from Tr. Mat. Inst. Steklova 278, 75-95 (2012). MSC: 35Q30 76A05 PDF BibTeX XML Cite \textit{V. V. Zhikov} and \textit{S. E. Pastukhova}, Proc. Steklov Inst. Math. 278, 67--87 (2012; Zbl 1303.35062); translation from Tr. Mat. Inst. Steklova 278, 75--95 (2012) Full Text: DOI
Han, Pigong Interior regularity of weak solutions to the perturbed Navier-Stokes equations. (English) Zbl 1265.35246 Appl. Math., Praha 57, No. 5, 427-444 (2012). Reviewer: Jiří Neústupa (Praha) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{P. Han}, Appl. Math., Praha 57, No. 5, 427--444 (2012; Zbl 1265.35246) Full Text: DOI Link
Guo, Zhengguang; Gala, Sadek A regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field. (English) Zbl 1256.35057 Anal. Appl., Singap. 10, No. 4, 373-380 (2012). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{S. Gala}, Anal. Appl., Singap. 10, No. 4, 373--380 (2012; Zbl 1256.35057) Full Text: DOI
Han, Pigong; He, Cheng Partial regularity of suitable weak solutions to the four-dimensional incompressible magneto-hydrodynamic equations. (English) Zbl 1256.35081 Math. Methods Appl. Sci. 35, No. 11, 1335-1355 (2012). MSC: 35Q35 35D30 35B65 PDF BibTeX XML Cite \textit{P. Han} and \textit{C. He}, Math. Methods Appl. Sci. 35, No. 11, 1335--1355 (2012; Zbl 1256.35081) Full Text: DOI
Wang, Wendong; Zhang, Zhifei Regularity of weak solutions for the Navier-Stokes equations in the class \(L^\infty \)(BMO\(^{-1}\)). (English) Zbl 1251.35012 Commun. Contemp. Math. 14, No. 3, 1250020, 24 p. (2012). Reviewer: Luisa Consiglieri (Lisboa) MSC: 35B65 76D05 35Q30 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, Commun. Contemp. Math. 14, No. 3, 1250020, 24 p. (2012; Zbl 1251.35012) Full Text: DOI
Wei, Zhiqiang; Wang, Yu-Zhu; Wang, Yin-Xia Logarithmically improved regularity criteria for the Navier-Stokes equations in Lorentz spaces. (English) Zbl 1245.76022 Appl. Math. Comput. 218, No. 19, 9848-9852 (2012). MSC: 76D05 35Q30 PDF BibTeX XML Cite \textit{Z. Wei} et al., Appl. Math. Comput. 218, No. 19, 9848--9852 (2012; Zbl 1245.76022) Full Text: DOI
Zhu, Xiang’ou A regularity criterion for the Navier-Stokes equations in the multiplier spaces. (English) Zbl 1242.35188 Abstr. Appl. Anal. 2012, Article ID 682436, 7 p. (2012). MSC: 35Q30 PDF BibTeX XML Cite \textit{X. Zhu}, Abstr. Appl. Anal. 2012, Article ID 682436, 7 p. (2012; Zbl 1242.35188) Full Text: DOI