Abujabal, H. A. S.; Obaid, M. A.; Aslam, M.; Thaheem, A. B. On annihilators of BCK-algebras. (English) Zbl 0847.06009 Czech. Math. J. 45, No. 4, 727-735 (1995). Let \(X\) be a commutative BCK-algebra and \(A\) an ideal of \(X\). To any subset \(B\) of \(X\) we associate the set \((A : B) = \{x \in X : x \wedge B \subseteq A\}\), where \(x \wedge B = \{x \wedge y : y \in B\}\). We show that \((A : B)\) is an ideal of \(X\) and define it as the generalized annihilator of \(B\) (relative to \(A\)). If \(A = \{0\}\), then \((A : B)\) coincides with the usual annihilator of \(B\). These and some other properties of generalized annihilators are contained in Section 3 of this paper. Section 4 contains some applications of generalized annihilators in quotient BCK-algebras and in the theory of prime ideals of BCK-algebras. Using the technique of generalized annihilators, we show that the quotient BCK-algebra of an involutory BCK-algebra is again an involutory BCK-algebra. We also obtain a characterization of prime ideals: A categorical ideal \(A\) is prime if and only if \((A : B) = A\). Section 2 contains some preliminary material for the development of our results. Cited in 1 Document MSC: 06F35 BCK-algebras, BCI-algebras Keywords:commutative BCK-algebra; ideal; generalized annihilator; quotient; prime ideals; involutory BCK-algebra PDF BibTeX XML Cite \textit{H. A. S. Abujabal} et al., Czech. Math. J. 45, No. 4, 727--735 (1995; Zbl 0847.06009) Full Text: EuDML OpenURL References: [1] H.A.S. Abujabal, M. Aslam and A.B. Thaheem: A Characterization of minimal prime ideals of BCK-algebras. Math. Japonica 37 (1992), 973-978. · Zbl 0763.06005 [2] J. Ahsan and A.B. Thaheem: On ideals in BCK-algebras. Math. Sem. Notes 5 (1977), 167-171. · Zbl 0387.03029 [3] J. Ahsan, E.Y. Deeba and A.B. Thaheem: On prime ideals of BCK-algebras. Math. Japonica 36 (1991), 875-882. · Zbl 0743.06013 [4] M. Aslam and A.B. Thaheem: On certain ideals of BCK-algebras. Math. Japonica 36 (1991), 895-906. · Zbl 0743.06014 [5] M. Aslam and A.B. Thaheem: On ideals of BCK-algebras. Math. Japonica · Zbl 0833.06015 [6] M. Aslam and A.B. Thaheem: New proof of prime ideal theorem for BCK-algebras. Math. Japonica 38 (1993), 969-972. · Zbl 0785.06013 [7] W.H. Cornish: On Iseki’s BCK-algebras. Algebraic Structures and Applications, Proc. of the First Western Australian Conference on Algebra, Marcel Dekker, Inc, New York, 1982, pp. 101-122. · Zbl 0486.03033 [8] W.H. Cornish: Varieties generated by finite BCK-algebras. Bull. Aust. Math. Soc. 22 (1980), 411-430. · Zbl 0439.08007 [9] C.S. Hoo: Bounded commutative BCK-algebras satisfying D.C.C. Math. Japonica 32 (1987), 217-225. · Zbl 0638.03066 [10] C.S. Hoo and P.V. Ramana Murty: The ideals of bounded commutative BCK-algebras. Math. Japonica 32 (1987), 723-733. · Zbl 0636.03060 [11] K. Iseki: On some ideals in BCK-algebra. Math. Sem. Notes 3 (1975), 65-70. [12] K. Iseki and S. Tanaka: Ideal theory of BCK-algebras. Math. Japonica 21 (1976), 351-366. · Zbl 0355.02041 [13] K. Iseki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1-26. · Zbl 0385.03051 [14] K. Iseki: On finite BCK-algebras. Math. Japonica 25 (1980), 225-229. · Zbl 0432.03039 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.