Chekroun, Mickaël D.; Liu, Honghu; McWilliams, James C. Variational approach to closure of nonlinear dynamical systems: autonomous case. (English) Zbl 1447.37070 J. Stat. Phys. 179, No. 5-6, 1073-1160 (2020). MSC: 37M21 70G75 PDF BibTeX XML Cite \textit{M. D. Chekroun} et al., J. Stat. Phys. 179, No. 5--6, 1073--1160 (2020; Zbl 1447.37070) Full Text: DOI arXiv OpenURL
Zhang, Linghai New results of general \(n\)-dimensional incompressible Navier-Stokes equations. (English) Zbl 1157.35084 J. Differ. Equations 245, No. 11, 3470-3502 (2008). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q30 35B40 35B65 35D10 76D05 PDF BibTeX XML Cite \textit{L. Zhang}, J. Differ. Equations 245, No. 11, 3470--3502 (2008; Zbl 1157.35084) Full Text: DOI OpenURL
Jolly, M. S.; Xiong, C. On computing the long-time solution of the two-dimensional Navier-Stokes equations. (English) Zbl 0838.76065 Theor. Comput. Fluid Dyn. 7, No. 4, 261-278 (1995). MSC: 76M25 76D05 37D45 PDF BibTeX XML Cite \textit{M. S. Jolly} and \textit{C. Xiong}, Theor. Comput. Fluid Dyn. 7, No. 4, 261--278 (1995; Zbl 0838.76065) Full Text: DOI OpenURL
Jolly, M. S.; Témam, R.; Xiong, C. Convergence of a chaotic attractor with increased spatial resolution of the Ginzburg-Landau equation. (English) Zbl 1080.34551 Chaos Solitons Fractals 5, No. 10, 1833-1845 (1995). MSC: 34G20 35Q55 47H20 37D45 PDF BibTeX XML Cite \textit{M. S. Jolly} et al., Chaos Solitons Fractals 5, No. 10, 1833--1845 (1995; Zbl 1080.34551) Full Text: DOI OpenURL
Yan, Yin Dimensions of attractors for discretizations for Navier-Stokes equations. (English) Zbl 0756.65146 J. Dyn. Differ. Equations 4, No. 2, 275-340 (1992). Reviewer: E.Krause (Aachen) MSC: 65Z05 65M06 35Q30 76D05 37C70 PDF BibTeX XML Cite \textit{Y. Yan}, J. Dyn. Differ. Equations 4, No. 2, 275--340 (1992; Zbl 0756.65146) Full Text: DOI OpenURL
Chow, Shui-Nee; Lu, Kening; Sell, George R. Smoothness of inertial manifolds. (English) Zbl 0767.58026 J. Math. Anal. Appl. 169, No. 1, 283-312 (1992). Reviewer: A.Dimca (Sydney) MSC: 37C75 37C70 58J60 PDF BibTeX XML Cite \textit{S.-N. Chow} et al., J. Math. Anal. Appl. 169, No. 1, 283--312 (1992; Zbl 0767.58026) Full Text: DOI OpenURL
Promislov, Keith; Temam, Roger Localization and approximation of attractors for the Ginzburg-Landau equation. (English) Zbl 0751.34036 J. Dyn. Differ. Equations 3, No. 4, 491-514 (1991). Reviewer: B.Straughan (Glasgow) MSC: 34G20 34D45 34C30 35B40 34C45 PDF BibTeX XML Cite \textit{K. Promislov} and \textit{R. Temam}, J. Dyn. Differ. Equations 3, No. 4, 491--514 (1991; Zbl 0751.34036) Full Text: DOI OpenURL
Titi, Edriss S. On approximate inertial manifolds to the Navier-Stokes equations. (English) Zbl 0723.35063 J. Math. Anal. Appl. 149, No. 2, 540-557 (1990). Reviewer: G.Pasa (Bucureşti) MSC: 35Q30 35B40 PDF BibTeX XML Cite \textit{E. S. Titi}, J. Math. Anal. Appl. 149, No. 2, 540--557 (1990; Zbl 0723.35063) Full Text: DOI OpenURL
Jolly, M. S.; Kevrekidis, I. G.; Titi, E. S. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations. (English) Zbl 0704.58030 Physica D 44, No. 1-2, 38-60 (1990). Reviewer: T.Rassias MSC: 37C70 37G99 34K99 37A30 PDF BibTeX XML Cite \textit{M. S. Jolly} et al., Physica D 44, No. 1--2, 38--60 (1990; Zbl 0704.58030) Full Text: DOI OpenURL
Jauberteau, F.; Rosier, C.; Temam, R. The nonlinear Galerkin method in computational fluid dynamics. (English) Zbl 0702.76077 Appl. Numer. Math. 6, No. 5, 361-370 (1990). MSC: 76M25 76D05 PDF BibTeX XML Cite \textit{F. Jauberteau} et al., Appl. Numer. Math. 6, No. 5, 361--370 (1990; Zbl 0702.76077) Full Text: DOI OpenURL
Marion, M.; Temam, R. Nonlinear Galerkin methods: The finite elements case. (English) Zbl 0702.65081 Numer. Math. 57, No. 3, 205-226 (1990). Reviewer: P.Laasonen MSC: 65M60 65M12 35G10 35K25 PDF BibTeX XML Cite \textit{M. Marion} and \textit{R. Temam}, Numer. Math. 57, No. 3, 205--226 (1990; Zbl 0702.65081) Full Text: DOI EuDML OpenURL
Promislow, Keith Induced trajectories and approximate inertial manifolds for the Ginzburg- Landau partial differential equation. (English) Zbl 0696.35177 Physica D 41, No. 2, 232-252 (1990). MSC: 35Q99 76E17 76E99 PDF BibTeX XML Cite \textit{K. Promislow}, Physica D 41, No. 2, 232--252 (1990; Zbl 0696.35177) Full Text: DOI OpenURL
Marion, Martine Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation. (English) Zbl 0724.65122 RAIRO, Modélisation Math. Anal. Numér. 23, No. 3, 463-488 (1989). MSC: 65Z05 35G10 35K25 80A22 35Q72 PDF BibTeX XML Cite \textit{M. Marion}, RAIRO, Modélisation Math. Anal. Numér. 23, No. 3, 463--488 (1989; Zbl 0724.65122) Full Text: DOI EuDML OpenURL
Temam, Roger Induced trajectories and approximate inertial manifolds. (English) Zbl 0688.58036 RAIRO, Modélisation Math. Anal. Numér. 23, No. 3, 541-561 (1989). Reviewer: J.Wu MSC: 34K99 58D25 35Q30 PDF BibTeX XML Cite \textit{R. Temam}, RAIRO, Modélisation Math. Anal. Numér. 23, No. 3, 541--561 (1989; Zbl 0688.58036) Full Text: DOI EuDML OpenURL
Temam, R. Do inertial manifolds apply to turbulence? (English) Zbl 0687.76058 Physica D 37, No. 1-3, 146-152 (1989). MSC: 76F99 37C70 37D45 PDF BibTeX XML Cite \textit{R. Temam}, Physica D 37, No. 1--3, 146--152 (1989; Zbl 0687.76058) Full Text: DOI OpenURL
Foias, C.; Temam, R. The algebraic approximation of attractors: The finite dimensional case. (English) Zbl 0671.58024 Physica D 32, No. 2, 163-182 (1988). Reviewer: F.Ling MSC: 37D45 PDF BibTeX XML Cite \textit{C. Foias} and \textit{R. Temam}, Physica D 32, No. 2, 163--182 (1988; Zbl 0671.58024) Full Text: DOI OpenURL