Verma, Khushboo; Verma, Jai Prakash; Ahmad, Izhar A new approach on multiobjective higher-order symmetric duality under cone-invexity. (English) Zbl 1509.90191 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 479-495 (2021). Reviewer: Sorin-Mihai Grad (Paris) MSC: 90C29 90C46 90C25 PDF BibTeX XML Cite \textit{K. Verma} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 479--495 (2021; Zbl 1509.90191) Full Text: DOI
Huang, Tone-Yau Second-order duality for a non-differentiable minimax programming in complex spaces. (English) Zbl 1393.90130 Int. J. Comput. Math. 94, No. 12, 2508-2519 (2017). MSC: 90C46 90C47 PDF BibTeX XML Cite \textit{T.-Y. Huang}, Int. J. Comput. Math. 94, No. 12, 2508--2519 (2017; Zbl 1393.90130) Full Text: DOI
Zălinescu, C. On second-order generalized convexity. (English) Zbl 1350.26018 J. Optim. Theory Appl. 168, No. 3, 802-829 (2016). Reviewer: Stephan Dempe (Freiberg) MSC: 26B25 90C26 PDF BibTeX XML Cite \textit{C. Zălinescu}, J. Optim. Theory Appl. 168, No. 3, 802--829 (2016; Zbl 1350.26018) Full Text: DOI
Padhan, Saroj Kumar; Nahak, Chandal Higher-order symmetric duality with higher-order generalized invexity. (English) Zbl 1342.90219 J. Appl. Math. Comput. 48, No. 1-2, 407-420 (2015). Reviewer: Vasile Postolică (Piatra Neamt) MSC: 90C46 90C30 PDF BibTeX XML Cite \textit{S. K. Padhan} and \textit{C. Nahak}, J. Appl. Math. Comput. 48, No. 1--2, 407--420 (2015; Zbl 1342.90219) Full Text: DOI
Khan, Meraj Ali Second-order duality for nondifferentiable minimax fractional programming problems with generalized convexity. (English) Zbl 1291.90258 J. Inequal. Appl. 2013, Paper No. 500, 9 p. (2013). MSC: 90C32 49K35 49N15 PDF BibTeX XML Cite \textit{M. A. Khan}, J. Inequal. Appl. 2013, Paper No. 500, 9 p. (2013; Zbl 1291.90258) Full Text: DOI
Padhan, S. K.; Nahak, C. Second-order symmetric duality with generalized invexity. (English) Zbl 1247.90286 Mishra, Shashi Kant (ed.), Topics in nonconvex optimization. Theory and applications. Selected papers based on the presentations at the advanced training programme on nonconvex optimization and applications, Varanasi, India, March 22–26, 2010. New York, NY: Springer (ISBN 978-1-4419-9639-8/hbk; 978-1-4419-9640-4/ebook). Springer Optimization and Its Applications 50, 205-214 (2011). MSC: 90C46 PDF BibTeX XML Cite \textit{S. K. Padhan} and \textit{C. Nahak}, Springer Optim. Appl. 50, 205--214 (2011; Zbl 1247.90286) Full Text: DOI
Hu, Qingjie; Yang, Gang; Jian, Jinbao On second order duality for minimax fractional programming. (English) Zbl 1231.90378 Nonlinear Anal., Real World Appl. 12, No. 6, 3509-3514 (2011). MSC: 90C47 90C32 90C46 PDF BibTeX XML Cite \textit{Q. Hu} et al., Nonlinear Anal., Real World Appl. 12, No. 6, 3509--3514 (2011; Zbl 1231.90378) Full Text: DOI
Ahmad, Izhar On second-order duality for minimax fractional programming problems with generalized convexity. (English) Zbl 1223.90065 Abstr. Appl. Anal. 2011, Article ID 563924, 15 p. (2011). MSC: 90C32 PDF BibTeX XML Cite \textit{I. Ahmad}, Abstr. Appl. Anal. 2011, Article ID 563924, 15 p. (2011; Zbl 1223.90065) Full Text: DOI
Ahmad, I.; Husain, Z.; Al-Homidan, S. Second-order duality in nondifferentiable fractional programming. (English) Zbl 1231.90355 Nonlinear Anal., Real World Appl. 12, No. 2, 1103-1110 (2011). MSC: 90C32 90C46 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Nonlinear Anal., Real World Appl. 12, No. 2, 1103--1110 (2011; Zbl 1231.90355) Full Text: DOI
Gulati, T. R.; Saini, Himani; Gupta, S. K. Second-order multiobjective symmetric duality with cone constraints. (English) Zbl 1188.90238 Eur. J. Oper. Res. 205, No. 2, 247-252 (2010). MSC: 90C29 PDF BibTeX XML Cite \textit{T. R. Gulati} et al., Eur. J. Oper. Res. 205, No. 2, 247--252 (2010; Zbl 1188.90238) Full Text: DOI
Antczak, Tadeusz A second order \(\eta \)-approximation method for constrained optimization problems involving second order invex functions. (English) Zbl 1212.90307 Appl. Math., Praha 54, No. 5, 433-445 (2009). MSC: 90C26 90C30 90C46 PDF BibTeX XML Cite \textit{T. Antczak}, Appl. Math., Praha 54, No. 5, 433--445 (2009; Zbl 1212.90307) Full Text: DOI EuDML Link
Husain, Z.; Ahmad, I.; Sharma, Sarita Second order duality for minmax fractional programming. (English) Zbl 1189.90190 Optim. Lett. 3, No. 2, 277-286 (2009). MSC: 90C47 90C32 90C46 PDF BibTeX XML Cite \textit{Z. Husain} et al., Optim. Lett. 3, No. 2, 277--286 (2009; Zbl 1189.90190) Full Text: DOI
Gulati, T. R.; Gupta, S. K. Higher-order symmetric duality with cone constraints. (English) Zbl 1189.90154 Appl. Math. Lett. 22, No. 5, 776-781 (2009). MSC: 90C30 90C46 90C11 PDF BibTeX XML Cite \textit{T. R. Gulati} and \textit{S. K. Gupta}, Appl. Math. Lett. 22, No. 5, 776--781 (2009; Zbl 1189.90154) Full Text: DOI
Ahmad, Izhar Second order symmetric duality in nondifferentiable multiobjective programming. (English) Zbl 1077.90059 Inf. Sci. 173, No. 1-3, 23-34 (2005). MSC: 90C29 90C46 PDF BibTeX XML Cite \textit{I. Ahmad}, Inf. Sci. 173, No. 1--3, 23--34 (2005; Zbl 1077.90059) Full Text: DOI
Gulati, T. R.; Gupta, Shiv Kumar Wolfe type second-order symmetric duality in nondifferentiable programming. (English) Zbl 1079.90148 J. Math. Anal. Appl. 310, No. 1, 247-253 (2005). MSC: 90C46 PDF BibTeX XML Cite \textit{T. R. Gulati} and \textit{S. K. Gupta}, J. Math. Anal. Appl. 310, No. 1, 247--253 (2005; Zbl 1079.90148) Full Text: DOI
Ahmad, I.; Husain, Z. Nondifferentiable second order symmetric duality in multiobjective programming. (English) Zbl 1075.90067 Appl. Math. Lett. 18, No. 7, 721-728 (2005). MSC: 90C29 90C46 PDF BibTeX XML Cite \textit{I. Ahmad} and \textit{Z. Husain}, Appl. Math. Lett. 18, No. 7, 721--728 (2005; Zbl 1075.90067) Full Text: DOI
Mishra, Shashi K.; Rueda, Norma G. Symmetric duality for mathematical programming in complex spaces with \(F\)-convexity. (English) Zbl 1033.90130 J. Math. Anal. Appl. 284, No. 1, 250-265 (2003). MSC: 90C30 PDF BibTeX XML Cite \textit{S. K. Mishra} and \textit{N. G. Rueda}, J. Math. Anal. Appl. 284, No. 1, 250--265 (2003; Zbl 1033.90130) Full Text: DOI
Gulati, T. R.; Ahmad, Izhar; Husain, I. Second order symmetric duality with generalized convexity. (English) Zbl 1278.90431 Opsearch 38, No. 2, 210-222 (2001). MSC: 90C46 26B25 90C26 PDF BibTeX XML Cite \textit{T. R. Gulati} et al., Opsearch 38, No. 2, 210--222 (2001; Zbl 1278.90431) Full Text: DOI
Mishra, S. K. Second order symmetric duality in mathematical programming with \(F\)-convexity. (English) Zbl 0982.90063 Eur. J. Oper. Res. 127, No. 3, 507-518 (2000). MSC: 90C46 90C47 90C11 90C30 PDF BibTeX XML Cite \textit{S. K. Mishra}, Eur. J. Oper. Res. 127, No. 3, 507--518 (2000; Zbl 0982.90063) Full Text: DOI
Osuna-Gómez, R.; Rufián-Lizana, A.; Ruíz-Canales, P. Multiobjective fractional programming with generalized convexity. (English) Zbl 0996.90065 Top 8, No. 1, 97-110 (2000). MSC: 90C29 90C32 PDF BibTeX XML Cite \textit{R. Osuna-Gómez} et al., Top 8, No. 1, 97--110 (2000; Zbl 0996.90065) Full Text: DOI
Devi, G. Symmetric duality for nonlinear programming problem involving \(\eta\)-bonvex functions. (English) Zbl 0955.90123 Eur. J. Oper. Res. 104, No. 3, 615-621 (1998). MSC: 90C30 90C46 PDF BibTeX XML Cite \textit{G. Devi}, Eur. J. Oper. Res. 104, No. 3, 615--621 (1998; Zbl 0955.90123) Full Text: DOI
Gulati, T. R.; Ahmad, Izhar Second order symmetric duality for nonlinear minimax mixed integer programs. (English) Zbl 0916.90210 Eur. J. Oper. Res. 101, No. 1, 122-129 (1997). MSC: 90C11 PDF BibTeX XML Cite \textit{T. R. Gulati} and \textit{I. Ahmad}, Eur. J. Oper. Res. 101, No. 1, 122--129 (1997; Zbl 0916.90210) Full Text: DOI