×

Chaotic sets of continuous and discontinuous maps. (English) Zbl 1181.37041

Summary: This paper discusses Li-Yorke chaotic sets of continuous and discontinuous maps with particular emphasis to shift and subshift maps. Scrambled sets and maximal scrambled sets are introduced to characterize Li-Yorke chaotic sets. The orbit invariant for a scrambled set is discussed. Some properties about maximality, equivalence and uniqueness of maximal scrambled sets are also discussed. It is shown that for shift maps the set of all scrambled pairs has full measure and chaotic sets of some discontinuous maps, such as the Gauss map, interval exchange transformations, and a class of planar piecewise isometries, are studied. Finally, some open problems on scrambled sets are listed and remarked.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B10 Symbolic dynamics
Full Text: DOI

References:

[1] Smítal, J., A chaotic function with some extremal properties, Proc. Amer. Math. Soc., 87, 54-56 (1983) · Zbl 0555.26003
[2] Wolfe, R.; Morris, H. C., Chaotic solutions of systems of first order partial differential equations, SIAM J. Math. Anal., 18, 1040-1063 (1987) · Zbl 0648.35014
[3] Fu, X. C., Criteria for a general continuous self-map to have chaotic sets, Nonlinear Anal., 26, 329-334 (1996) · Zbl 0843.58038
[4] Mai, J., Continuous maps with the whole space being a scrambled set, Chinese Sci. Bull., 42, 1603-1606 (1997) · Zbl 0930.37010
[5] Blanchard, F.; Glasner, E.; Kolyada, S.; Maass, A., On Li-Yorke pairs, Zeitschrift F. Reine Angew. Math., 547, 51-68 (2002) · Zbl 1059.37006
[6] Smítal, J., A chaotic function with a scrambled set of positive Lebesgue measure, Proc Amer. Math. Soc., 92, 50-54 (1984) · Zbl 0592.26006
[7] Kuchta, M.; Smítal, J., Two-point scrambled set implies chaos, (European Conference on Iteration Theory (Caldes de Malavella, 1987) (1989), World Sci. Publishing: World Sci. Publishing Teaneck, NJ), 427-430
[8] Zhou, Z. L., Chaos and topological entropy, Acta Math. Sinica, 31, 83-87 (1988), (Chinese series) · Zbl 0682.58034
[9] Fu, X. C.; Duan, J., Infinite-dimensional linear dynamical systems with chaoticity, J. Nonlinear Sci., 9, 197-211 (1999)
[10] Fu, X. C.; Fu, Y.; Duan, J.; MacKay, R. S., Chaotic properties of subshifts generated by a nonperiodic recurrent orbit, Internat. J. Bifur. Chaos, 10, 1067-1073 (2000) · Zbl 1090.37501
[11] Smítal, J., Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297, 269-282 (1986) · Zbl 0639.54029
[12] Fu, X. C.; You, Y. C., Chaotic sets of shift and weighted shift maps, Nonlinear Anal., 71, 2141-2152 (2009) · Zbl 1171.37017
[13] Balibrea, F.; Jiménez López, V., A characterization of chaotic functions with entropy zero via their maximal scrambled sets, Math. Bohem., 120, 293-298 (1995) · Zbl 0852.54039
[14] Walters, P., An Introduction to Ergodic Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0475.28009
[15] Blanchard, F.; Huang, W.; Snoha, L., Topological size of scrambled sets, Colloq. Math., 110, 2, 293-361 (2008) · Zbl 1146.37008
[16] Mai, J., Scrambled sets of continuous maps of 1-dimensional polyhedra, Trans. Amer. Math. Soc., 351, 353-362 (1999) · Zbl 0924.58051
[17] Huang, W.; Ye, X. D., Homeomorphisms with the whole compacta being scrambled sets, Ergodic Theory Dynam. Systems, 21, 77-91 (2001) · Zbl 0978.37003
[18] Chua, L. O.; Lin, T., Chaos in digital filters, IEEE Trans. CAS, 35, 648-658 (1988)
[19] Chua, L. O.; Lin, T., Chaos and fractals from third-order digital filters, Int. J. Circuit Theory Appl., 18, 241-255 (1990) · Zbl 0704.58032
[20] Ogorzałek, J., Complex behaviour in digital filters, Internat. J. Bifur. Chaos, 2, 11-29 (1992) · Zbl 0873.94005
[21] Kocarev, L.; Wu, C. W.; Chua, L. O., Complex behaviour in digital filters with overflow nonlinearity: Analytical results, IEEE Trans CAS-II, 43, 234-246 (1996)
[22] O. Feely, D. Fitzgerald, Non-ideal and chaotic behaviour in bandpass sigma-delta modulators, in: Proc. of Workshop on Nonl. Dynam. of Electr. Syst., Sevilla. (1996); O. Feely, D. Fitzgerald, Non-ideal and chaotic behaviour in bandpass sigma-delta modulators, in: Proc. of Workshop on Nonl. Dynam. of Electr. Syst., Sevilla. (1996)
[23] Scott, A. J.; Holmes, C. A.; Milburn, G. J., Hamiltonian mappings and circle packing phase spaces, Physica D, 155, 34-50 (2001) · Zbl 0981.37017
[24] Ashwin, P.; Fu, X. C.; Terry, J. R., Riddling and invariance for discontinuous maps preserving Lebesgue measure, Nonlinearity, 15, 633-645 (2002) · Zbl 1073.37009
[25] Ashwin, P.; Fu, X. C., Tangencies in invariant circle packings for certain planar piecewise isometries are rare, Dynam. Syst., 16, 4, 333-345 (2001) · Zbl 1032.37026
[26] Ashwin, P.; Fu, X. C.; Deane, J., Properties of the invariant disk packing in a model bandpass sigma-delta modulator, Internat J. Bifur. Chaos, 13, 631-641 (2003) · Zbl 1056.37059
[27] Fu, X. C.; Shui, S. L.; Yuan, L. G., Tangents-free property in invariant disk packings generated by some general planar piecewise isometries, Chaos Solitons Fractals, 36, 115-120 (2008) · Zbl 1152.52303
[28] Fu, X. C.; Lu, W. P.; Ashwin, P.; Duan, J., Symbolic representations of iterated maps, Topol. Methods Nonlinear Anal., 18, 1, 119-148 (2001) · Zbl 1021.37007
[29] Adler, R. L., Geodesic flows, interval maps, and symbolic dynamics, (Bedford, T.; Keane, M.; Series, C., Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (1991), Oxford Univ. Press) · Zbl 0752.58007
[30] Goetz, A., Dynamics of a piecewise isometries, Illinois J. Math., 44, 465-478 (2000) · Zbl 0964.37009
[31] Katok, A.; Hasselblat, B., Introduction to Modern Theory of Dynamical Systems (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0878.58020
[32] Xiong, J. C.; Yang, Z. G., Chaos caused by a topologically mixing map, (Dynamical Systems and Related Topics, (Nagoya, 1990) (1991), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 550-572
[33] Gu, R. B., The Hausdorff dimension of the scrambled set of a self-mapping of a line segment, Kexue Tongbao, 41, 1633-1635 (1996), (in Chinese)
[34] Misiurewicz, M., Chaos almost everywhere, (Iteration Theory and Its Functional Equations (Lochau, 1984). Iteration Theory and Its Functional Equations (Lochau, 1984), Lecture Notes in Math., vol. 1163 (1985), Springer: Springer Berlin), 125-130 · Zbl 0625.58007
[35] Bruckner, A. M.; Hu, T., On scrambled sets for chaotic functions, Trans. Amer. Math. Soc., 301, 289-297 (1987) · Zbl 0639.26004
[36] Janková, K., On the stability of chaotic functions, Časopis Pěst. Mat., 112, 351-354 (1987) · Zbl 0639.26005
[37] Mizera, I., Continuous chaotic functions of an interval have generically small scrambled sets, Bull. Austral. Math. Soc., 37, 89-92 (1988) · Zbl 0636.58025
[38] I. Mizera, The size of scrambled sets: \(n\); I. Mizera, The size of scrambled sets: \(n\)
[39] Kato, H., On scrambled sets and a theorem of Kuratowski on independent sets, Proc. Amer. Math. Soc., 126, 2151-2157 (1998) · Zbl 0893.54033
[40] Li, S. H., \( \omega \)-chaos and topological entropy, Trans. Amer. Math. Soc., 339, 243-249 (1993) · Zbl 0812.54046
[41] Smítal, J.; Štefánková, M., Omega-chaos almost everywhere, Discrete Contin. Dyn. Syst., 9, 5, 1323-1327 (2003) · Zbl 1041.37016
[42] Auslander, J., (Minimal Flows and Their Extensions. Minimal Flows and Their Extensions, North-Holland Mathematics Studies, vol. 153 (1988), North-Holland: North-Holland Amsterdam) · Zbl 0654.54027
[43] Schweizer, B.; Smítal, J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344, 737-754 (1994) · Zbl 0812.58062
[44] Balibrea, F.; Jiménez López, V., Maximal scrambled sets for chaotic functions with topological entropy zero, (Iteration Theory (Batschuns, 1992) (1996), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 277-278 · Zbl 0918.58050
[45] Liao, G.; Wang, L., Almost periodicity, chain recurrence and chaos, Israel J. Math., 93, 145-156 (1996) · Zbl 0852.54020
[46] Iwanik, A., Independent sets of transitive points, (Dynamical Systems and Ergodic Theory, vol. 23 (1989), Banach Center Publications), 277-282 · Zbl 0703.54024
[47] Blanchard, F.; Host, B.; Ruette, S., Asymptotic pairs in positive-entropy systems, Ergodic Theory Dynam. Systems, 22, 671-686 (2002) · Zbl 1018.37005
[48] Huang, W.; Ye, X. D., Devaney’s chaos or 2-scattering implies Li-Yorke chaos, Topology Appl., 117, 259-272 (2002) · Zbl 0997.54061
[49] Buzzi, J., Piecewise isometries have zero topological entropy, Ergodic Theory Dynam. Systems, 21, 1371-1377 (2001) · Zbl 0993.37012
[50] Goetz, A., Sofic subshifts and piecewise isometric systems, Ergodic Theory Dynam. Systems, 19, 1485-1501 (1999) · Zbl 0949.37002
[51] Ashwin, P.; Fu, X. C., On the geometry of orientation preserving planar piecewise isometries, J. Nonlinear Sci., 12, 207-240 (2002) · Zbl 1100.37027
[52] Chua, L. O.; Lin, T., Fractal pattern of second-order non-linear digital filters: a new symbolic analysis, Int. J. of Circ. Th. and Appl., 18, 541-550 (1990) · Zbl 0715.93062
[53] R.L. Adler, Symbolic dynamics and Markov partitions, vol. 53, MSRI Publications, 1996. Also in Bull. Amer. Math. Soc. (New Series) 35 (1998) 1-56; R.L. Adler, Symbolic dynamics and Markov partitions, vol. 53, MSRI Publications, 1996. Also in Bull. Amer. Math. Soc. (New Series) 35 (1998) 1-56 · Zbl 0892.58019
[54] Adler, R. L.; Kitchens, B.; Tresser, C., Dynamics of non-ergodic piecewise affine maps of the torus, Ergodic Theory Dynam. Systems, 21, 959-999 (2001) · Zbl 1055.37048
[55] Fu, X. C.; Ashwin, P., Symbolic analysis for some planar piecewise linear maps, Discrete Contin. Dyn. Syst., Ser. A, 9, 1533-1548 (2003) · Zbl 1042.37009
[56] Z.H. Chen, X.C. Fu, R.Z. Yu, Dynamical complexity of planar piecewise isometries, in: Proc. of 2009 Int. Workshop on Chaos-Fractals Th. and Appl. (IWCFTA’09) (in press); Z.H. Chen, X.C. Fu, R.Z. Yu, Dynamical complexity of planar piecewise isometries, in: Proc. of 2009 Int. Workshop on Chaos-Fractals Th. and Appl. (IWCFTA’09) (in press)
[57] X.C. Fu, R.Z. Yu, Z.H. Chen, Periodicity and complexity of a rational sigma-delta map, Preprint, 2009; X.C. Fu, R.Z. Yu, Z.H. Chen, Periodicity and complexity of a rational sigma-delta map, Preprint, 2009
[58] Weiss, B., Topological transitivity and ergodic measures, Math. Syst. Th., 5, 71-75 (1971) · Zbl 0212.40103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.