Cone-constrained eigenvalue problems: structure of cone spectra. (English) Zbl 1471.15029

Summary: There is a rich literature devoted to the eigenvalue analysis of variational inequalities. Of special interest is the case in which the constraint set of the variational inequality is a closed convex cone. The set of eigenvalues of a matrix \(A\) relative to a closed convex cone \(K\) is called the \(K\)-spectrum of \(A\). Cardinality and topological results for cone spectra depend on the kind of matrices and cones that are used as ingredients. It is important to distinguish for instance between symmetric and nonsymmetric matrices and, on the other hand, between polyhedral and nonpolyhedral cones. However, more subtle subdivisions are necessary for having a better understanding of the structure of cone spectra. This work elaborates on this issue.


15B48 Positive matrices and their generalizations; cones of matrices
15A18 Eigenvalues, singular values, and eigenvectors
47A75 Eigenvalue problems for linear operators
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI


[1] Adly, S.; Rammal, H., A new method for solving second-order cone eigenvalue complementarity problems, J. Optim Theory Appl., 165, 563-585 (2015) · Zbl 1321.90137
[2] Baker, GP, Theory of cones, Linear Algebra Appl., 39, 263-291 (1981) · Zbl 0467.15002
[3] Chen, J-S; Pan, S., Semismooth Newton methods for the cone spectrum of linear transformations relative to Lorentz cones, Linear Nonlinear Anal., 1, 13-36 (2015) · Zbl 1302.35160
[4] Gajardo, P.; Seeger, A., Equilibrium problems involving the Lorentz cone, J Global Optim., 58, 321-340 (2014) · Zbl 1349.90798
[5] Fernandes, L.; Fukushima, M.; Júdice, J.; Sherali, H., The second-order cone eigenvalue complementarity problem, Optim. Methods Softw., 31, 24-52 (2016) · Zbl 1338.90206
[6] Fernandes, R.; Júdice, J.; Trevisan, V., Complementarity eigenvalue of graphs, Linear Algebra Appl., 527, 216-231 (2017) · Zbl 1365.05171
[7] Hantoute, A.: Contribution à la sensibilité et à la stabilité en optimisation et en théorie métrique des points critiques. Ph.D. Thesis, Université Paul Sabatier, Toulouse (2003)
[8] Hiriart-Urruty, JB; Seeger, A., A variational approach to copositive matrices, SIAM Rev., 52, 593-629 (2010) · Zbl 1207.15037
[9] Holubová, G.; Nečesal, P., A note on the relation between the Fučik spectrum and Pareto eigenvalues, J. Math. Anal. Appl., 427, 618-628 (2015) · Zbl 1322.47059
[10] Iusem, A.; Seeger, A., On pairs of vectors achieving the maximal angle of a convex cone, Math. Program., 104, 501-523 (2005) · Zbl 1087.52005
[11] Iusem, A.; Seeger, A., Searching for critical angles in a convex cone, Math Program., 120, 1, 3-25 (2009) · Zbl 1163.52003
[12] Iusem, A.; Seeger, A., On convex cones with infinitely many critical angles, Optimization, 56, 115-128 (2007) · Zbl 1121.52008
[13] Kalapodi, A., Cardinality of accumulation points of infinite sets, Internat. Math. Forum, 11, 539-546 (2016)
[14] Kuc̆era, M., A new method for the obtaining of eigenvalues of variational inequalities of the special type, Comment. Math. Univ. Carolinae, 18, 205-210 (1977) · Zbl 0395.49015
[15] Miersemann, E., On higher eigenvalues of variational inequalities, Comment. Math. Univ. Carolinae, 24, 657-665 (1983) · Zbl 0638.49020
[16] Quittner, P.; A note to, E., Miersemann’s papers on higher eigenvalues of variational inequalities, Comment Math. Univ. Carolinae, 26, 665-674 (1985)
[17] Quittner, P., Spectral analysis of variational inequalities, Comment. Math. Univ. Carolinae, 27, 605-629 (1986)
[18] Resler, J., Stability of eigenvalues and eigenvectors of variational inequalities, Comment. Math. Univ. Carolinae, 29, 541-550 (1988) · Zbl 0655.49006
[19] Riddell, RC, Eigenvalue problems for nonlinear elliptic variational inequalities on a cone, J. Funct. Anal., 26, 333-355 (1977) · Zbl 0369.47039
[20] Rockafellar, RT; Wets, RJ-B, Variational analysis (1998), Berlin: Springer, Berlin · Zbl 0888.49001
[21] Seeger, A., Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra Appl., 292, 1-14 (1999) · Zbl 1016.90067
[22] Seeger, A., Complementarity spectral analysis of connected graphs, Linear Algebra Appl., 543, 205-225 (2018) · Zbl 1387.05160
[23] Seeger, A., Spectral classification of convex cones, Positivity, 24, 1241-1261 (2020) · Zbl 1464.15048
[24] Seeger, A.; Sossa, D., Critical angles between two convex cones I : General theory, TOP, 24, 44-65 (2016) · Zbl 1341.52013
[25] Seeger, A.; Torki, M., On eigenvalues induced by a cone-constraint, Linear Algebra Appl., 372, 181-206 (2003) · Zbl 1046.15008
[26] Seeger, A.; Torki, M., Local minima of quadratic forms on convex cones, J Global Optim., 44, 1-28 (2009) · Zbl 1179.90255
[27] Seeger, A.; Torki, M., On spectral maps induced by convex cones, Linear Algebra Appl., 592, 65-92 (2020) · Zbl 1436.15009
[28] Zhang, L-H; Shen, C.; Yang, WH; Júdice, JJ, A Lanczos method for large-scale extreme Lorentz eigenvalue problems, SIAM J Matrix Anal. Appl., 39, 611-631 (2018) · Zbl 1390.90543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.