Comparison between different types of abstract integrals in Riesz spaces. (English) Zbl 0881.28008

Let \(E\) be a Dedekind complete Riesz space and \([a,b]\) a real interval. In the first part of the paper, the authors give a characterization of “Riemann-integrable” functions \(f:[a,b]\to E\) well known in the real-valued case. In the second part, they introduce an integral for real-valued functions with respect to an \(E\)-valued measure: A function \(f\) is integrable if there is an \(L^1\)-Cauchy sequence of simple functions \((o)\)-converging in measure to \(f\). This concept of integrability is compared with several other concepts of integrability.
Reviewer: H.Weber (Udine)


28B15 Set functions, measures and integrals with values in ordered spaces
Full Text: DOI


[1] Aguilera N. E., Harboure E. O.,On the search for weighted norm inequalities for the Fourier transform, Pacific J. Maths,104 (1) (1983), 1–14. · Zbl 0527.42001
[2] Betancor J.J.,A mixed Parseval’s equation and a generalized Hankel transformation of distributions, Canad. J. Math.,41 (1989), 274–284. · Zbl 0666.46046
[3] Betancor J.J.,Two complex variants of a Hankel type transformation of generalized functions, Port. Mathematica,46 (3) (1989), 229–243. · Zbl 0736.46035
[4] Erdelyi A.,On some functional transformations, Rend. Sem. Mat. Univ. Pol. Torino,10 (1950/51), 217–234.
[5] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G.,Tables of integral transforms, II, Mc Graw Hill Book Company, New York, Toronto, London, 1954. · Zbl 0055.36401
[6] Hayek N.,Estudio de la ecuación diferencial xy”+(v+1)y’+y=0 y de sus aplicaciones, Collectanea Mathematica,18 (1966/67), 55–174.
[7] Lee W. Y.,On Schwartz’s Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal.,6 (2) (1975), 427–432. · Zbl 0293.46028
[8] Méndez J. M. R., Socas M.M.,A pair of generalized Hankel-Clifford transformations and their applications, J. Math. Anal. Appl.,154 (2) (1991), 543–557. · Zbl 0746.46031
[9] Rooney P. G.,On the range of certain fractional integrals, Can. J. Math.,24 (1972), 1198–1216. · Zbl 0249.44009
[10] Rooney P. G.,On the representation of functions as Fourier transforms, Canad. J. Math.,11 (1959), 168–174. · Zbl 0086.08701
[11] Rooney P. G.,On an inversion operator for the Fourier transformation, Canad. Math. Bull.,3 (2) (1960), 157–165. · Zbl 0097.31102
[12] Rooney P. G.,On the representation of functions by the Hankel and some related transformations, to appear in Proc. Roy. Soc. Edimburgh. · Zbl 0837.44005
[13] Schwartz L.,Théorie des distributiones, Hermann, Paris, 1957.
[14] Slater L. J.,Confluent hypergeometric functions, Cambridge University Press, Cambridge, 1939. · Zbl 0141.07203
[15] Stein E. M., Weiss G.,Fourier analysis on euclidean spaces, Princeton University Press, Princeton, New Jersey, 1975. · Zbl 0232.42007
[16] Watson G. N.,A treatise on the theory of Bessel functions, Cambridge University Press, London, 1958. · Zbl 0083.20702
[17] Widder D. V.,The Laplace transform, Princeton University Press, Princeton, 1946. · Zbl 0060.24801
[18] Zemanian A. H.,Inversion formulas for the distributional Laplace transformation, SIAM J. Appl. Math.,14 (1966), 159–166. · Zbl 0147.11904
[19] Zemanian A. H.,Generalized integral transformations, Interscience, New York, 1968. (Reprinted by Dover, N.Y., 1987). · Zbl 0181.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.