×

On stability of some Newton systems. (English) Zbl 1473.70043

Summary: The aim of this paper is to study the stability of an equilibrium for the second order ordinary differential equation \(\ddot{q} = F(q),\ q \in \mathbb{R}^2\), which are the equations of motion of a point of mass under the action of force \(F\). The smooth force \(F\) is not supposed to be gradient. We consider two situations separately, the case of systems which have an indefinite quadratic first integral and the situation where the forces point inwards to circumferences with center at the equilibrium point.

MSC:

70K20 Stability for nonlinear problems in mechanics
34D20 Stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albouy, A.: Projective dynamics and first integrals. Regul. Chaotic Dyn. 20(3), 247-276 (2015) · Zbl 1378.70015 · doi:10.1134/S1560354715030041
[2] Appell, P.E.: De l’homographie en mécanique. Am. J. Math. 12, 103-114 (1890) · JFM 21.0904.01 · doi:10.2307/2369252
[3] Barone-Netto, A., de Oliveira Cesar, M.: Non-conservative positional systems-stability. Dyn. Stab. Syst. 2(3-4), 213-221 (1988) · Zbl 0656.70028
[4] Barone-Netto, A., de Oliveira Cesar, M., Gorni, G.: A computational method for the stability of a class of mechanical systems. J. Differ. Equ. 184(1), 1-19 (2002) · Zbl 1042.34083 · doi:10.1006/jdeq.2001.4126
[5] Bertrand, J.M.: Mémoire sur quleuques-unes des forms les plus simples qui puissent présenter les intégrales des équations différentielles du mouvement d’un point matériel. J. Math. Pure Appl. Sér. II, 2, 113-140 (1857)
[6] de Oliveira Cesar, M., Barone-Netto, A.: The existence of Liapunov functions for some non-conservative positional mechanical systems. J. Differ. Equ. 91(2), 235-244 (1991) · Zbl 0850.70225 · doi:10.1016/0022-0396(91)90140-5
[7] de Oliveira Cesar, M., Barone-Netto, A.: A necessary and sufficient condition for the stability of the equilibrium. J. Differ. Equ. 96(1), 142-151 (1992) · Zbl 0745.34048 · doi:10.1016/0022-0396(92)90147-F
[8] Kasner, E.: The Ithaca colloquium. Bull. Am. Math. Soc. 8(1), 22-25 (1901) · JFM 32.0040.06 · doi:10.1090/S0002-9904-1901-00850-6
[9] Katzin, G.H., Levine, J.: Quadratic first integrals of the geodesics in spaces of constant curvature. Tensor 16(1), 97-103 (1965) · Zbl 0134.39503
[10] Lagrange, J.-L.: Recherches sur le mouvement d’un corps qui est attiré vers deux centres fixes. Second mémoire, où l’on applique la méthode précédentes à différentes hyphotèses d’attraction. Miscellanea Taurinensia, IV:216-243, 1766-1769 (1773)
[11] Lundmark, H.: A new class of integrable Newton systems. J. Nonlinear Math. Phys. 8(sup1), 195-199 (2001) · Zbl 0993.70015 · doi:10.2991/jnmp.2001.8.s.34
[12] Rauch-Wojciechowski, S., Marciniak, K., Lundmark, H.: Quasi-Lagrangian systems of Newton equations. J. Math. Phys. 40(12), 6366-6398 (1999) · Zbl 0958.70013 · doi:10.1063/1.533098
[13] Taliaferro, S.D.: An inversion of the Lagrange-Dirichlet stability theorem. Arch. Ration. Mech. Anal. 73(2), 183-190 (1980) · Zbl 0426.70025 · doi:10.1007/BF00258236
[14] Zampieri, G.: Liapunov stability for some central forces. J. Differ. Equ. 74(2), 254-265 (1988) · Zbl 0668.34051 · doi:10.1016/0022-0396(88)90005-8
[15] Zampieri, G., Barone-Netto, A.: Attractive Central Forces May Yield Liapunov Instability. Dynamical Systems and Partial Differential Equations, pp. 105-112. Editorial Equinoccio, Caracas (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.