×

On commutativity of rings with constraints on subsets. (English) Zbl 0808.16037

The authors state thirteen ring properties of familiar form, most being constraints on commutators; and they prove that various combinations of these imply commutativity in appropriate classes of rings. The results are unsurprising extensions of work of several authors. A sample theorem is as follows: Let \(R\) be a ring and \(A\) a commutative set of nilpotent elements, and suppose that for each non-central \(x \in R\) there exists \(f(t) \in \mathbb{Z}[t]\) such that \(x - x^ 2 f(x) \in A\). If for each \(x, y \in R\) there exist integers \(k = k(x,y) \geq 1\), \(m = m(x,y) > 1\) and \(n = n(x,y) \geq 1\) such that \([x, x^ n y - y^ m x^ k] = 0\), then \(R\) is commutative.

MSC:

16U70 Center, normalizer (invariant elements) (associative rings and algebras)
16U80 Generalizations of commutativity (associative rings and algebras)
16N40 Nil and nilpotent radicals, sets, ideals, associative rings
16R40 Identities other than those of matrices over commutative rings
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] H. A. S. Abujabal and M. S. Khan: On commutativity theorems for rings. Internat. J. Math. \(\&\) Math. Sci. 13 (1990), 87-92. · Zbl 0699.16021
[2] H. A. S. Abujabal: A generalization of some commutativity theorems for rings I. Tamkang J. Math. 21 (1990), 239-245. · Zbl 0741.16012
[3] H. A. S. Abujabal: A generalization of some commutativity theorems for rings II. Riv. Mat. Univ. Parma (4) 16 (1990), 131-140. · Zbl 0741.16013
[4] H. A. S. Abujabal: Commutativity of one sided \(s\)-unital rings. Resultate Math. 18 (1990), 189-196. · Zbl 0727.16021
[5] H. E. Bell: The identity \((xy)^n=x^ny^n\): does it buy commutativity. Math. Mag. 55 (1982), 165-170. · Zbl 0504.16024
[6] M. Ashraf and M. A. Quadri: On commutativity of associative rings. Bull. Austral. Math. Soc. 38 (1988), 267-271. · Zbl 0659.16027
[7] M. Ashraf and M. A. Quadri: On commutativity of associative rings with constraints involving a subset. Radovi Mat. 5 (1989), 141-149. · Zbl 0683.16025
[8] I. N. Herstein: The structure of certain class of rings. Amer. J. Math. 75 (1953), 864-871. · Zbl 0051.02501
[9] I. N. Herstein: Two remarks on the commutativity of rings. Amer. J. Math. 73 (1951), 756-762. · Zbl 0043.26602
[10] Y. Hirano, Y. Kobayashi and H. Tominaga: Some polynomial identities and commutativity of \(s\)-unital rings. Math. J. Okayama Univ. 24 (1982), 7-13. · Zbl 0487.16023
[11] T. P. Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon. 27 (1982), 267- 268. · Zbl 0481.16013
[12] H. Komatsu: A commutativity theorem for rings. Math. J. Okayama Univ. 26 (1984), 109-111. · Zbl 0568.16017
[13] H. Komatsu, T. Nishinaka and H. Tominaga: On commutativity of rings. Radovi Mat. 6 (1990), 303-311. · Zbl 0718.16031
[14] H. Komatsu and H. Tominaga: Some commutativity conditions for rings with unity. Resultate Math. 19 (1991), 83-88. · Zbl 0776.16017
[15] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419-423. · Zbl 0605.16020
[16] E. Psomopoulos: A commutativity theorem for rings. Math. Japon. 29 (1984), 371-373. · Zbl 0548.16029
[17] M. A. Quadri and M. A. Khan: A commutativity theorem for left \(s\)-unital rings. Bull. Inst. Math. Acad. Sinica 15 (1987), 323-327. · Zbl 0635.16019
[18] M. A. Quadri and M. A. Khan: A commutativity theorem for associative rings. Math. Japon. 33 (1988), 275-279. · Zbl 0655.16021
[19] H. Tominaga and A. Yaqub: Some commutativity properties for rings II. Math. J. Okayama Univ. 25 (1983), 173-179. · Zbl 0527.16024
[20] H. Tominaga and A. Yaqub: A commutativity theorem for one sided \(s\)-unital rings. Math. J. Okayama Univ. 26 (1984), 125-128. · Zbl 0571.16016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.