The perturbed Tikhonov’s algorithm and some of its applications. (English) Zbl 0821.65036

The author considers the problem of finding a zero of a nonlinear monotone operator (in the sense of Minty and Browder) in a real Hilbert space. The operator may be given approximately with an error tending to zero along the sequence of approximations. For solving the problem an algorithm based on the concept of Tikhonov’s regularization is proposed. Results of numerical tests with model finite-dimensional optimization problems are presented.
Note of the reviewer: The results of the theoretical part of the work are not new. A detailed analysis of Tikhonov’s regularization of nonlinear monotone operator equations was given by F. E. Browder, Ya. I. Al’ber, F. P. Vasil’ev, A. B. Bakushinsky in the sixties-eighties. There are no references to these authors’ works in the paper.


65J15 Numerical solutions to equations with nonlinear operators
47H05 Monotone operators and generalizations
47J25 Iterative procedures involving nonlinear operators
Full Text: DOI EuDML


[1] P. ALART, 1985, Contribution à la résolution numérique des inclusions différentielles, Thèse de troisième cycle, Université de Montpellier.
[2] P. ALART, B. LEMAIRE, Penalization in non classical convex programming via variational convergence, to appear in Mathematical Programming. Zbl0748.90051 · Zbl 0748.90051
[3] P. ALEXANDRE, 1988, Méthode des centres et pénalités extérieures associées à une méthode proximale en optimisation convexe, Mémoire de licence en informatique, Université de Liège.
[4] H. ATTOUCH, 1984, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman, London. Zbl0561.49012 MR773850 · Zbl 0561.49012
[5] H. ATTOUCH, R. J. B. WETS, 1986, Isometries for the Legendre-Fenchel Transform. Trans. A.M.S. 296, 1. 33-60. Zbl0607.49009 MR837797 · Zbl 0607.49009
[6] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : I. The Epigraphical Distance, Techn. Report, University of California-Davis. Zbl0753.49007 · Zbl 0753.49007
[7] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : II. A Framework for nonlinear Conditioning, Techn. Report, AVA-MAC, Université de Perpignan. Zbl0793.49005 · Zbl 0793.49005
[8] H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : III. \epsilon -approximate Solutions, WP-87-25 (Title : Lipschitzian Stability of \epsilon -Approximate Solutions in Convex Optimization), IIASA, Laxenburg. Zbl0802.49009 · Zbl 0802.49009
[9] A. AUSLENDER, 1987, Numerical Methods for Non-differentiable Convex Optimization, Mathematical Programming Study, 30, 102-126. Zbl0616.90052 MR874134 · Zbl 0616.90052
[10] A. AUSLENDER, J. P. CROUZEIX, P. FEDIT, 1987, Penalty Proximal Methods in Convex Programming, Journal of Optimization Theory and Applications, 55,1-21. Zbl0622.90065 MR915675 · Zbl 0622.90065
[11] [11] A. BENSOUSSAN, P. KENNETH, 1968, Sur l’analogie entre les méthodes de régularisation et de pénalisation. RAIRO. 13, 13-26. Zbl0177.48105 MR242497 · Zbl 0177.48105
[12] H. BREZIS, 1973, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5. Zbl0252.47055 MR348562 · Zbl 0252.47055
[13] S. COLLINET, 1988, Association point proximal et pénalité exponentielle en programmation convexe, Mémoire de licence en informatique, Université de Liège.
[14] P. FEDIT, 1985, Contribution aux méthodes numériques en programmation mathématique non différentiable, Thèse de troisième cycle, Université de Clermont II.
[15] S. GOWDA, M. TEBOULLE, 1990, A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control and Optimization, 28, 925-935. Zbl0713.49042 MR1051630 · Zbl 0713.49042
[16] J. HARTUNG, 1980, On Exponential Penalty Function Methods, Math. Operationstorsch, Statist., Ser. Optimization, 11, 71-84. Zbl0514.90077 MR608906 · Zbl 0514.90077
[17] A. A. KAPLAN, 1973, Characteristic Properties of Penalty Functions, English Transl. in Soviet Math. Dokl., 14, 849-852. Zbl0285.90065 MR439194 · Zbl 0285.90065
[18] A. A. KAPLAN, 1978, On a Convex programming Method with Internal Regularization, English Transl. in Soviet. Math. Dokl, 19, 795-799. Zbl0423.90061 · Zbl 0423.90061
[19] B. LEMAIRE, 1971, Régularisation et pénalisation en optimisation convexe, Séminaire d’analyse convexe, exposé 17, Institut de Math., Université des Sciences et Techniques du Languedoc, Montpellier. Zbl0353.90072 MR638215 · Zbl 0353.90072
[20] B. LEMAIRE, 1988, Coupling Optimization Methods and Variational Convergence, Trends in Mathematical Optimization International Series of Num. Math., K. H. Hoffmann, J. B. Hiriart-Urruty, C. Lemarechal, J. Zowe, editors, Birkhauser Verlag, Basel, 84, 163-179. Zbl0633.49010 MR1017952 · Zbl 0633.49010
[21] B. LEMAIRE, 1987, The proximal Algorithm, in < New Methods of Optimization and their Industrial Use > , Proc. Symp. Pau and Paris, Int. Ser. Numer. Math.,87, 73-77. Zbl0692.90079 MR1001168 · Zbl 0692.90079
[22] B. MARTINET, 1972, Algorithmes pour la résolution de problèmes d’optimisation et de minimax, Thèse d’Etat, Université de Grenoble.
[23] G. J. MINTY, 1964, On the Monotonicity of the Gradient of a Convex Function, Pacific J. Math., 14, 243-247. Zbl0123.10601 MR167859 · Zbl 0123.10601
[24] K. MOUALLIF, 1987, Sur la convergence d’une méthode associant pénalisation et régularisation, Bull. Soc. Roy. Sc. de Liège, 56, 175-180. Zbl0641.90065 MR911354 · Zbl 0641.90065
[25] K. MOUALLIF, 1989, Convergence variationnelle et méthodes perturbée pour les problèmes d’optimisation et de point selle, Thèse d’Etat, Université de Liège.
[26] K. MOUALLIF, P. TOSSINGS, 1987, Une méthode de pénalisation exponentielle associée à une régularisation proximale, Bull. Soc. Roy. Sc. de Liège, 56, 181-192. Zbl0623.90062 MR911355 · Zbl 0623.90062
[27] K. MOUALLIF, P. TOSSINGS, 1990, Variational Metric and Exponential Penalization, JOTA, 67, 185-192. Zbl0688.90043 MR1080273 · Zbl 0688.90043
[28] F. MURPHY, 1974, A Class of Exponential Penalty Functions, SIAM Journal Control, 12, 679-687. Zbl0257.90050 MR363486 · Zbl 0257.90050
[29] R. T. ROCKAFELLAR, 1970, Convex Analysis, Univ. Press, Princeton, New-Jersey. Zbl0193.18401 MR274683 · Zbl 0193.18401
[30] R. T. ROCKAFELLAR, 1970, On the Maximal Monotonicity of Subdifferential Mappings, Pacific J. of Math., 33, 209-216. Zbl0199.47101 MR262827 · Zbl 0199.47101
[31] R. T. ROCKAFELLAR, 1976, Augmented Lagrangians and Applications of the proximal Point Algorithm in Convex Programming, Math. of Operations Research, 1, 97-116. Zbl0402.90076 MR418919 · Zbl 0402.90076
[32] R. T. ROCKAFELLAR, 1976, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 14, 877-898. Zbl0358.90053 MR410483 · Zbl 0358.90053
[33] J. J. STRODIOT, V. H. NGUYEN, 1979, An Exponential Penalty Method for Nondifferentiable Minimax Problems with General Constraints, Journal of Opt. Theory and Appl, 27, 205-219. Zbl0373.90064 MR529860 · Zbl 0373.90064
[34] J. J. STRODIOT, V. H. NGUYEN, 1988, On the Numerical Treatment of the Inclusion 0 \? \partial f(x), Topics in Nonsmooth Mechanics, J. J. Moreau, P.D. Panagiotopoulos, G. Strang, eds., Birkhauser Verlag, Basel. Zbl0663.65064 MR957086 · Zbl 0663.65064
[35] A. TIKHONOV, V. ARSENINE, 1976, Méthodes de résolution de problèmes mal posés, Editions MIR de Moscou, traduction française. MR455367
[36] P. TOSSINGS, 1987, Optimisation convexe, Séminaire d’analyse fonctionnelle appliquée, Université de Liège.
[37] P. TOSSINGS, 1990, Sur l’ordre de convergence de l’algorithme du point proximal perturbé, Bull. Soc. Roy. Sc. de Liège, 58,459-466. Zbl0686.90032 MR1039675 · Zbl 0686.90032
[38] P. TOSSINGS, 1990, Sur les zéros des opérateurs maximaux monotones et applications, Thèse d’Etat, Université de Liège.
[39] P. TOSSINGS, 1991, Convergence variationnelle et opérateurs maximaux monoteurs d’un espace de Hilbert réel, Bull. Soc. Roy. Sc. de Liège; 60, 103-132. Zbl0733.47047 MR1117786 · Zbl 0733.47047
[40] P. TOSSINGS, The Perturbed Proximal Point Algorithm and Some of its Applications, to appear in Applied mathematics and optimization. Zbl0791.65039 · Zbl 0791.65039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.