×

Controlling the motion of charged particles in a vacuum electromagnetic field from the boundary. (English) Zbl 1162.93024

Summary: We consider the problem of driving two non-relativistic charged particles in a bounded vacuum electromagnetic field to the same location by applying electromagnetic forces through the boundary of the domain. The dynamics of the particles is modeled by the Maxwell-Lorentz system and the problem is reduced to a boundary feedback control problem. Using the perturbed energy method, we design feedback controllers and prove that the particles under the designed control move to the origin exponentially. The techniques of control design and stability analysis may be potentially applied to control of fusion.

MSC:

93C20 Control/observation systems governed by partial differential equations
78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosino, G.; Albanese, R., Magnetic control of plasma current, position, and shape in Tokamaks: A survey or modeling and control approaches, IEEE Control Systems Magazine, 25, 5, 76-92 (2005)
[2] Ariola, M.; Pironti, A., Plasma shape control for the JET tokamak: An optimal output regulation approach, IEEE Control Systems Magazine, 25, 5, 65-75 (2005)
[3] Bensoussan, A., Some remarks on the exact controllability of Maxwell’s equations, (Differential equations and control theory, Iasi, 1990. Differential equations and control theory, Iasi, 1990, Pitman res. notes math. ser., Vol. 250 (1991), Longman Sci. Tech: Longman Sci. Tech Harlow), 17-29 · Zbl 0850.93371
[4] Eller, M. M.; Masters, J. E., Exact boundary controllability of electromagnetic fields in a general region, Applied Mathematics and Optimization, 45, 99-123 (2002) · Zbl 0997.35099
[5] Humphries, S., Principles of charged particle acceleration (1999), John Wiley and Sons: John Wiley and Sons New York
[6] Kapitonov, B. V., Stabilization and exact boundary controllability for Maxwell’s equations, SIAM Journal of Control and Optimization, 32, 2, 408-420 (1994) · Zbl 0827.35012
[7] Kapitonov, B. V., Stabilization and simultaneous boundary controllability for a pair of Maxwell’s equations, Matematica Aplicada e Computacional, 15, 3, 213-225 (1996) · Zbl 0870.35105
[8] Kapitonov, B. V., Stabilization and simultaneous boundary controllability for a class of evolution systems, Computational of Applied Mathematics, 17, 2, 149-160 (1998) · Zbl 0918.93017
[9] Kapitonov, B. V.; Menzala, G. P., Uniform stabilization for Maxwell’s equations with boundary conditions with memory, Asymptotic Analysics, 26, 2, 91-104 (2001) · Zbl 0998.78004
[10] Kapitonov, B. V.; Raupp, M. A., Exact boundary controllability in problems of transmission for the system of electromagneto-elasticity, Mathematical Methods in the Applied Sciences, 24, 4, 193-207 (2001) · Zbl 0977.74040
[11] Kapitonov, B. V.; Souza, J. S., Observability and uniqueness theorem for a coupled hyperbolic system, International Journal of Mathematics and Mathematical Science, 24, 6, 423-432 (2000) · Zbl 0963.35113
[12] Kime, K. A., Boundary controllability of Maxwell’s equations in a spherical region, SIAM Journal of Control and Optimization, 28, 2, 294-319 (1990) · Zbl 0693.93010
[13] Kime, K. A.; Russell, D. L., Boundary controllability of Maxwell’s equations in a spherical region, (Control problems for systems described by partial differential equations and applications,Gainesville, FL, 1986. Control problems for systems described by partial differential equations and applications,Gainesville, FL, 1986, Lecture notes in control and inform. sci., Vol. 97 (1987), Springer: Springer Berlin), 259-262
[14] Komornik, V., Boundary stabilization, observation and control of Maxwell’s equations, Panamerican Mathematical Journal, 4, 4, 47-61 (1994) · Zbl 0849.35136
[15] Komornik, V., Stabilisation frontiere des equations de Maxwell [Boundary stabilization of Maxwell’s equations], Comptes Rendes de l’Academie des Science, Serie I (Mathematique), 318, 6, 535-540 (1994), (in French) · Zbl 0861.35114
[16] Komornik, V., Rapid boundary stabilization of Maxwell’s equations, (Gauthier-Villars, Equations aux derivees partielles et applications (1998), Sci. Med. Elsevier: Sci. Med. Elsevier Paris), 611-622 · Zbl 0924.35164
[17] Krigman, S. S., Exact boundary controllability of Maxwell’s equations with weak conductivity in the heterogeneous medium inside a general domain, Discrete and Continuous Dynamical Systems, Supplement, 590-601 (2007) · Zbl 1163.93317
[18] Krstic, M.; Smyshlyaev, A., Boundary control of PDEs: A course on backstepping designs (2008), SIAM · Zbl 1149.93004
[19] Lagnese, J. E., Exact boundary controllability of Maxwell’s equations in a general region, SIAM Journal of Control and Optimization, 27, 2, 374-388 (1989) · Zbl 0678.49032
[20] Lagnese, J. E., A singular perturbation problem in exact controllability of the Maxwell system, ESAIM Control, Optimisation and Calculus of Variades, 6, 275-289 (2001) · Zbl 1030.93025
[21] Lasiecka, I.; Triggiani, R., Uniform stabilization of the wave equation with Dirchlet or Neumann feedback control without geometrical conditions, Applied Mathematics and Optimization, 25, 189-224 (1992) · Zbl 0780.93082
[22] Lister, J. B.; Portone, A.; Gribov, Y., Plasma control in ITER, IEEE Control Systems Magazine, 26, 2, 79-91 (2006)
[23] Lohrengel, S.; Nicaise, S., Les équations de Maxwell dans des matériaux composites: problèmes de densit [Maxwell’s equations in composite materials: remarks on density], Comptes Rendes de l’Academie des Science, Serie I (Mathematique), 330, 11, 991-996 (2000), (in French) · Zbl 0954.35153
[24] Nalin, O., Contrôlabilité exacte sur une partie du bord des équations de Maxwell (French. English summary) [Exact controllability on part of the boundary of Maxwell’s equations], Comptes Rendes de l’Academie des Science, Serie I (Mathematique), 309, 13, 811-815 (1989) · Zbl 0688.49041
[25] Nicaise, S., Exact boundary controllability of Maxwell’s equations in heterogeneous media and an application to an inverse source problem, SIAM Journal of Control and Optimization, 38, 4, 1145-1170 (2000) · Zbl 0963.93041
[26] Nicaise, S., Exact boundary controllability of Maxwell’s equations in heterogeneous media, (Evolution equations and their applications in physical and life sciences. Evolution equations and their applications in physical and life sciences, Bad Herrenalb, 1998. Evolution equations and their applications in physical and life sciences. Evolution equations and their applications in physical and life sciences, Bad Herrenalb, 1998, Lecture notes in pure and appl. math., Vol. 215 (2001), Dekker: Dekker New York), 139-148 · Zbl 0973.35182
[27] Nicaise, S.; Pignotti, C., Boundary stabilization of Maxwell’s equations with space-time variable coefficients, ESAIM. Control, Optimisation and Calculus of Variations, 9, 563-578 (2003) · Zbl 1063.93041
[28] Phung, K. D., Stabilisation frontiére du système de Maxwell avec la condition aux limites absorbante de Silver-Müller [Boundary stabilization of the Maxwell system with the Silver-Muller absorbing boundary condition], Comptes Rendes de l’Academie des Science, Serie I (Mathematique), 320, 2, 187-192 (1995), (in French) · Zbl 0844.35125
[29] Phung, K. D., Contrôlabilité exacte et stabilisation interne des équations de Maxwell [Exact controllability and stabilization of Maxwell’s equations], Comptes Rendes de l’Academie des Science, Serie I (Mathematique), 323, 2, 169-174 (1996), (in French) · Zbl 0858.93011
[30] Phung, K. D., Contrôle et stabilisation d’ondes électromagnétiques [Control and stabilization of electromagnetic waves], ESAIM Control, Optimisation and Calculus of Variades, 5, 87-137 (2000), (in French) · Zbl 0942.93002
[31] Pignotti, C., Observability and controllability of Maxwell’s equations, Rendicontide Matematica e delle sue Application Serie VII, 19, 4, 523-546 (2000) · Zbl 0979.93057
[32] Pironti, A.; Walker, M., Control of tokamak plasmas: Introduction to a special section, IEEE Control Systems Magazine, 25, 5, 24-29 (2005)
[33] Pironti, A.; Walker, M., Fusion, tokamaks, and plasma control: An introduction and tutorial, IEEE Control Systems Magazine, 25, 5, 30-43 (2005)
[34] Pironti, A.; Walker, M., Control of tokamak plasmas. II, IEEE Control Systems Magazine, 26, 2, 30-31 (2006)
[35] Russell, D. L., The Dirichlet-Neumann boundary control problem associated with Maxwell’s equations in a cylindrical region, SIAM Journal of Control and Optimization, 24, 2, 199-229 (1986) · Zbl 0594.49026
[36] Smyshlyaev, A.; Krstic, M., Backstepping observers for a class of parabolic PDEs, Systems and Control Letters, 54, 613-625 (2005) · Zbl 1129.93334
[37] Schultz, K. R., Why fusion? A discussion of energy alternatives, IEEE Control Systems Magazine, 26, 2, 32-34 (2006)
[38] Vazquez, R.; Krstic, M., Control of turgulent and magnetohydrodynamic channel flows (2007), Birkhauser: Birkhauser Boston
[39] Walker, M. L.; Humphreys, D. A.; Mazon, D.; Moreau, D.; Okabayashi, M.; Osborne, T. H., Emerging applications in tokamak plasma control, IEEE Control Systems Magazine, 26, 2, 35-63 (2006)
[40] Zhang, X., Exact internal controllability of Maxwell’s equations, Applied Mathematics and Optimization, 41, 2, 155-170 (2000) · Zbl 0952.93011
[41] Zhou, Q., Exact internal controllability of Maxwell’s equations, Japan Journal of Industrial and Applied Mathematics, 14, 2, 245-256 (1997) · Zbl 1306.35129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.