Kouri, D. P. A matrix-free trust-region Newton algorithm for convex-constrained optimization. (English) Zbl 1489.90136 Optim. Lett. 16, No. 3, 983-997 (2022). MSC: 90C26 90C53 PDF BibTeX XML Cite \textit{D. P. Kouri}, Optim. Lett. 16, No. 3, 983--997 (2022; Zbl 1489.90136) Full Text: DOI OpenURL
Butyn, Emerson; Karas, Elizabeth W.; de Oliveira, Welington A derivative-free trust-region algorithm with copula-based models for probability maximization problems. (English) Zbl 1490.65114 Eur. J. Oper. Res. 298, No. 1, 59-75 (2022). MSC: 65K05 90C15 90C30 90C56 PDF BibTeX XML Cite \textit{E. Butyn} et al., Eur. J. Oper. Res. 298, No. 1, 59--75 (2022; Zbl 1490.65114) Full Text: DOI OpenURL
Duong Viet Thong; Shehu, Yekini; Iyiola, Olaniyi S.; Hoang Van Thang New hybrid projection methods for variational inequalities involving pseudomonotone mappings. (English) Zbl 1481.47085 Optim. Eng. 22, No. 1, 363-386 (2021). MSC: 47J25 47H09 47J20 65K15 90C25 PDF BibTeX XML Cite \textit{Duong Viet Thong} et al., Optim. Eng. 22, No. 1, 363--386 (2021; Zbl 1481.47085) Full Text: DOI OpenURL
Reich, Simeon; Thong, Duong Viet; Cholamjiak, Prasit; Long, Luong Van Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space. (English) Zbl 1486.65069 Numer. Algorithms 88, No. 2, 813-835 (2021). MSC: 65K15 47J25 49J40 65J15 90C33 PDF BibTeX XML Cite \textit{S. Reich} et al., Numer. Algorithms 88, No. 2, 813--835 (2021; Zbl 1486.65069) Full Text: DOI OpenURL
Zhu, Honglan; Ni, Qin; Jiang, Jianlin; Dang, Chuangyin A new alternating direction trust region method based on conic model for solving unconstrained optimization. (English) Zbl 07383636 Optimization 70, No. 7, 1555-1579 (2021). MSC: 65Kxx 90Cxx PDF BibTeX XML Cite \textit{H. Zhu} et al., Optimization 70, No. 7, 1555--1579 (2021; Zbl 07383636) Full Text: DOI arXiv OpenURL
Zhu, Honglan; Ni, Qin; Zhang, Xuebing A simple approximated solution method for solving fractional trust region subproblems of nonlinearly equality constrained optimization. (English) Zbl 07460806 J. Inequal. Appl. 2020, Paper No. 25, 19 p. (2020). MSC: 90C32 65K05 90C53 90C55 PDF BibTeX XML Cite \textit{H. Zhu} et al., J. Inequal. Appl. 2020, Paper No. 25, 19 p. (2020; Zbl 07460806) Full Text: DOI OpenURL
Wang, Kexin; Yang, Cheng; Shao, Zhijiang; Huang, Xiaojin; Biegler, Lorenz T. A trust-region framework for real-time optimization with structural process-model mismatch. (English) Zbl 1466.90101 Vietnam J. Math. 48, No. 4, 809-830 (2020). MSC: 90C30 49M37 90C59 PDF BibTeX XML Cite \textit{K. Wang} et al., Vietnam J. Math. 48, No. 4, 809--830 (2020; Zbl 1466.90101) Full Text: DOI OpenURL
Li, Ningning; Xue, Dan; Sun, Wenyu; Wang, Jing A stochastic trust region method for unconstrained optimization problems. (English) Zbl 1435.90094 Math. Probl. Eng. 2019, Article ID 8095054, 10 p. (2019). MSC: 90C15 90C26 90C55 65K05 PDF BibTeX XML Cite \textit{N. Li} et al., Math. Probl. Eng. 2019, Article ID 8095054, 10 p. (2019; Zbl 1435.90094) Full Text: DOI OpenURL
Cui, Ying; Sun, Defeng; Toh, Kim-Chuan On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming. (English) Zbl 1423.90171 Math. Program. 178, No. 1-2 (A), 381-415 (2019). MSC: 90C22 90C25 90C31 65K05 PDF BibTeX XML Cite \textit{Y. Cui} et al., Math. Program. 178, No. 1--2 (A), 381--415 (2019; Zbl 1423.90171) Full Text: DOI arXiv OpenURL
Schiela, Anton A flexible framework for cubic regularization algorithms for nonconvex optimization in function space. (English) Zbl 1418.49035 Numer. Funct. Anal. Optim. 40, No. 1, 85-118 (2019). Reviewer: Pál Burai (Debrecen) MSC: 49M37 90C30 PDF BibTeX XML Cite \textit{A. Schiela}, Numer. Funct. Anal. Optim. 40, No. 1, 85--118 (2019; Zbl 1418.49035) Full Text: DOI Link OpenURL
Zhu, Honglan; Ni, Qin A simple alternating direction method for the conic trust region subproblem. (English) Zbl 1427.90296 Math. Probl. Eng. 2018, Article ID 5358191, 9 p. (2018). MSC: 90C55 90C26 90C30 65K05 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{Q. Ni}, Math. Probl. Eng. 2018, Article ID 5358191, 9 p. (2018; Zbl 1427.90296) Full Text: DOI OpenURL
Lenders, Felix; Kirches, C.; Potschka, A. trlib: a vector-free implementation of the GLTR method for iterative solution of the trust region problem. (English) Zbl 1390.35364 Optim. Methods Softw. 33, No. 3, 420-449 (2018). MSC: 35Q90 65K05 90C20 90C30 PDF BibTeX XML Cite \textit{F. Lenders} et al., Optim. Methods Softw. 33, No. 3, 420--449 (2018; Zbl 1390.35364) Full Text: DOI arXiv OpenURL
Qian, Elizabeth; Grepl, Martin; Veroy, Karen; Willcox, Karen A certified trust region reduced basis approach to PDE-constrained optimization. (English) Zbl 1377.35078 SIAM J. Sci. Comput. 39, No. 5, S434-S460 (2017). MSC: 35J20 35K10 49K20 65K10 65M15 90C06 90C30 PDF BibTeX XML Cite \textit{E. Qian} et al., SIAM J. Sci. Comput. 39, No. 5, S434--S460 (2017; Zbl 1377.35078) Full Text: DOI OpenURL
Zhou, QunYan; Sun, WenYu; Zhang, HongChao A new simple model trust-region method with generalized Barzilai-Borwein parameter for large-scale optimization. (English) Zbl 1369.65075 Sci. China, Math. 59, No. 11, 2265-2280 (2016). Reviewer: Hang Lau (Montréal) MSC: 65K05 90C30 90C06 90C51 90C53 PDF BibTeX XML Cite \textit{Q. Zhou} et al., Sci. China, Math. 59, No. 11, 2265--2280 (2016; Zbl 1369.65075) Full Text: DOI OpenURL
Grapiglia, Geovani Nunes; Yuan, Jinyun; Yuan, Ya-xiang Nonlinear stepsize control algorithms: complexity bounds for first- and second-order optimality. (English) Zbl 1354.90138 J. Optim. Theory Appl. 171, No. 3, 980-997 (2016). MSC: 90C30 65K05 49M37 49M15 90C29 90C60 68Q25 PDF BibTeX XML Cite \textit{G. N. Grapiglia} et al., J. Optim. Theory Appl. 171, No. 3, 980--997 (2016; Zbl 1354.90138) Full Text: DOI OpenURL
Huang, Yakui; Liu, Hongwei Smoothing projected Barzilai-Borwein method for constrained non-Lipschitz optimization. (English) Zbl 1357.90117 Comput. Optim. Appl. 65, No. 3, 671-698 (2016). MSC: 90C26 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{H. Liu}, Comput. Optim. Appl. 65, No. 3, 671--698 (2016; Zbl 1357.90117) Full Text: DOI OpenURL
Dong, Yunda Douglas-Rachford splitting method for semidefinite programming. (English) Zbl 1338.90250 J. Appl. Math. Comput. 51, No. 1-2, 569-591 (2016). MSC: 90C06 90C22 90C30 90C35 PDF BibTeX XML Cite \textit{Y. Dong}, J. Appl. Math. Comput. 51, No. 1--2, 569--591 (2016; Zbl 1338.90250) Full Text: DOI OpenURL
Shang, Meijuan; Zhang, Chao; Peng, Dingtao; Zhou, Shenglong A half thresholding projection algorithm for sparse solutions of LCPs. (English) Zbl 1323.90071 Optim. Lett. 9, No. 6, 1231-1245 (2015). MSC: 90C33 PDF BibTeX XML Cite \textit{M. Shang} et al., Optim. Lett. 9, No. 6, 1231--1245 (2015; Zbl 1323.90071) Full Text: DOI OpenURL
Grapiglia, Geovani N.; Yuan, Jinyun; Yuan, Ya-xiang On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization. (English) Zbl 1319.90065 Math. Program. 152, No. 1-2 (A), 491-520 (2015). MSC: 90C30 65K05 49M37 49M15 90C29 90C60 68Q25 PDF BibTeX XML Cite \textit{G. N. Grapiglia} et al., Math. Program. 152, No. 1--2 (A), 491--520 (2015; Zbl 1319.90065) Full Text: DOI OpenURL
Huang, Yuanyuan; Dong, Yunda New properties of forward-backward splitting and a practical proximal-descent algorithm. (English) Zbl 1336.65101 Appl. Math. Comput. 237, 60-68 (2014). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{Y. Dong}, Appl. Math. Comput. 237, 60--68 (2014; Zbl 1336.65101) Full Text: DOI OpenURL
Shang, Meijuan; Nie, Cuiping A shrinkage-thresholding projection method for sparsest solutions of LCPs. (English) Zbl 1307.90183 J. Inequal. Appl. 2014, Paper No. 51, 10 p. (2014). MSC: 90C33 90C26 90C90 PDF BibTeX XML Cite \textit{M. Shang} and \textit{C. Nie}, J. Inequal. Appl. 2014, Paper No. 51, 10 p. (2014; Zbl 1307.90183) Full Text: DOI OpenURL
Xue, Dan; Sun, Wenyu; Qi, Liqun An alternating structured trust region algorithm for separable optimization problems with nonconvex constraints. (English) Zbl 1304.90166 Comput. Optim. Appl. 57, No. 2, 365-386 (2014). MSC: 90C26 PDF BibTeX XML Cite \textit{D. Xue} et al., Comput. Optim. Appl. 57, No. 2, 365--386 (2014; Zbl 1304.90166) Full Text: DOI OpenURL
Li, Guoyin; Ma, Alfred Ka Chun; Pong, Ting Kei Robust least square semidefinite programming with applications. (English) Zbl 1330.90061 Comput. Optim. Appl. 58, No. 2, 347-379 (2014). Reviewer: Jan-Joachim Rückmann (Bergen) MSC: 90C15 90C22 PDF BibTeX XML Cite \textit{G. Li} et al., Comput. Optim. Appl. 58, No. 2, 347--379 (2014; Zbl 1330.90061) Full Text: DOI OpenURL
Dong, Qiao-Li; Yao, Yonghong; He, Songnian Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces. (English) Zbl 1320.90103 Optim. Lett. 8, No. 3, 1031-1046 (2014). MSC: 90C48 PDF BibTeX XML Cite \textit{Q.-L. Dong} et al., Optim. Lett. 8, No. 3, 1031--1046 (2014; Zbl 1320.90103) Full Text: DOI OpenURL
Dong, Yunda; Zhang, Xue New step lengths in projection method for variational inequality problems. (English) Zbl 1329.65138 Appl. Math. Comput. 220, 239-245 (2013). MSC: 65K15 PDF BibTeX XML Cite \textit{Y. Dong} and \textit{X. Zhang}, Appl. Math. Comput. 220, 239--245 (2013; Zbl 1329.65138) Full Text: DOI OpenURL
Agarwal, Anshul; Biegler, Lorenz T. A trust-region framework for constrained optimization using reduced order modeling. (English) Zbl 1293.76109 Optim. Eng. 14, No. 1, 3-35 (2013). MSC: 76N25 65K10 PDF BibTeX XML Cite \textit{A. Agarwal} and \textit{L. T. Biegler}, Optim. Eng. 14, No. 1, 3--35 (2013; Zbl 1293.76109) Full Text: DOI OpenURL
Weiwei, Yang; Yueting, Yang; Chenhui, Zhang; Mingyuan, Cao A Newton-like trust region method for large-scale unconstrained nonconvex minimization. (English) Zbl 1291.90192 Abstr. Appl. Anal. 2013, Article ID 478407, 6 p. (2013). MSC: 90C26 90C53 90C06 PDF BibTeX XML Cite \textit{Y. Weiwei} et al., Abstr. Appl. Anal. 2013, Article ID 478407, 6 p. (2013; Zbl 1291.90192) Full Text: DOI OpenURL
Lewis, Robert Michael; Nash, Stephen G. Using inexact gradients in a multilevel optimization algorithm. (English) Zbl 1276.90069 Comput. Optim. Appl. 56, No. 1, 39-61 (2013). MSC: 90C30 PDF BibTeX XML Cite \textit{R. M. Lewis} and \textit{S. G. Nash}, Comput. Optim. Appl. 56, No. 1, 39--61 (2013; Zbl 1276.90069) Full Text: DOI OpenURL
Toint, Philippe L. Nonlinear stepsize control, trust regions and regularizations for unconstrained optimization. (English) Zbl 1270.90078 Optim. Methods Softw. 28, No. 1, 82-95 (2013). MSC: 90C30 PDF BibTeX XML Cite \textit{P. L. Toint}, Optim. Methods Softw. 28, No. 1, 82--95 (2013; Zbl 1270.90078) Full Text: DOI OpenURL
Chen, X.; Akella, S.; Navon, I. M. A dual-weighted trust-region adaptive POD 4-D var applied to a finite-volume shallow water equations model on the sphere. (English) Zbl 1426.76347 Int. J. Numer. Methods Fluids 68, No. 3, 377-402 (2012). MSC: 76M12 76U05 86A05 PDF BibTeX XML Cite \textit{X. Chen} et al., Int. J. Numer. Methods Fluids 68, No. 3, 377--402 (2012; Zbl 1426.76347) Full Text: DOI OpenURL
Jia, Chunxia; Zhu, Detong A projected gradient trust-region method for solving nonlinear systems with convex constraints. (English) Zbl 1240.90378 Appl. Math., Ser. B (Engl. Ed.) 26, No. 1, 57-69 (2011). MSC: 90C30 49M37 PDF BibTeX XML Cite \textit{C. Jia} and \textit{D. Zhu}, Appl. Math., Ser. B (Engl. Ed.) 26, No. 1, 57--69 (2011; Zbl 1240.90378) Full Text: DOI OpenURL
Liu, Hongwei; Huang, Yakui; Li, Xiangli Partial projected Newton method for a class of stochastic linear complementarity problems. (English) Zbl 1232.65091 Numer. Algorithms 58, No. 4, 593-618 (2011). Reviewer: Hang Lau (Montréal) MSC: 65K05 90C33 90C15 PDF BibTeX XML Cite \textit{H. Liu} et al., Numer. Algorithms 58, No. 4, 593--618 (2011; Zbl 1232.65091) Full Text: DOI OpenURL
Wang, Zhongwen; Yang, Qingzhi; Yang, Yuning The relaxed inexact projection methods for the split feasibility problem. (English) Zbl 1208.65088 Appl. Math. Comput. 217, No. 12, 5347-5359 (2011). MSC: 65K05 PDF BibTeX XML Cite \textit{Z. Wang} et al., Appl. Math. Comput. 217, No. 12, 5347--5359 (2011; Zbl 1208.65088) Full Text: DOI OpenURL
Chen, X.; Navon, I. M.; Fang, F. A dual-weighted trust-region adaptive POD 4D-VAR applied to a finite-element shallow-water equations model. (English) Zbl 1428.76145 Int. J. Numer. Methods Fluids 65, No. 5, 520-541 (2011). MSC: 76M21 76M10 35Q35 PDF BibTeX XML Cite \textit{X. Chen} et al., Int. J. Numer. Methods Fluids 65, No. 5, 520--541 (2011; Zbl 1428.76145) Full Text: DOI OpenURL
Zhang, Jianzhong; Qu, Biao; Xiu, Naihua Some projection-like methods for the generalized Nash equilibria. (English) Zbl 1198.91026 Comput. Optim. Appl. 45, No. 1, 89-109 (2010). MSC: 91A10 91A06 90C33 PDF BibTeX XML Cite \textit{J. Zhang} et al., Comput. Optim. Appl. 45, No. 1, 89--109 (2010; Zbl 1198.91026) Full Text: DOI OpenURL
Shi, Zhen-Jun; Xu, Zhiwei The convergence of subspace trust region methods. (English) Zbl 1182.65094 J. Comput. Appl. Math. 231, No. 1, 365-377 (2009). Reviewer: Berwin A. Turlach (Crawley) MSC: 65K05 90C30 90C51 PDF BibTeX XML Cite \textit{Z.-J. Shi} and \textit{Z. Xu}, J. Comput. Appl. Math. 231, No. 1, 365--377 (2009; Zbl 1182.65094) Full Text: DOI OpenURL
Noor, Muhammad Aslam; Bnouhachem, Abdellah; Ullah, Saleem Self-adaptive methods for general variational inequalities. (English) Zbl 1172.65034 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 9, 3728-3738 (2009). Reviewer: Vasilis Dimitriou (Chania) MSC: 65K10 49J40 49M25 PDF BibTeX XML Cite \textit{M. A. Noor} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 9, 3728--3738 (2009; Zbl 1172.65034) Full Text: DOI OpenURL
Wang, Yunjuan; Zhu, Detong A projected gradient method with nonmonotonic backtracking technique for solving convex constrained monotone variational inequality problem. (English) Zbl 1183.90428 Appl. Math., Ser. B (Engl. Ed.) 23, No. 4, 463-474 (2008). MSC: 90C33 49M99 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{D. Zhu}, Appl. Math., Ser. B (Engl. Ed.) 23, No. 4, 463--474 (2008; Zbl 1183.90428) Full Text: DOI OpenURL
Li, Chunfa; Xu, Shiqin; Yang, Xue A trust region interior point algorithm for infinite dimensional nonlinear programming. (English) Zbl 1193.90211 J. Appl. Math. Comput. 27, No. 1-2, 183-198 (2008). MSC: 90C46 90C48 90C51 PDF BibTeX XML Cite \textit{C. Li} et al., J. Appl. Math. Comput. 27, No. 1--2, 183--198 (2008; Zbl 1193.90211) Full Text: DOI OpenURL
Bergmann, M.; Cordier, L. Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. (English) Zbl 1388.76073 J. Comput. Phys. 227, No. 16, 7813-7840 (2008). MSC: 76D55 76D25 76M25 PDF BibTeX XML Cite \textit{M. Bergmann} and \textit{L. Cordier}, J. Comput. Phys. 227, No. 16, 7813--7840 (2008; Zbl 1388.76073) Full Text: DOI OpenURL
Qu, Biao; Xiu, Naihua A new halfspace-relaxation projection method for the split feasibility problem. (English) Zbl 1135.65022 Linear Algebra Appl. 428, No. 5-6, 1218-1229 (2008). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65F30 PDF BibTeX XML Cite \textit{B. Qu} and \textit{N. Xiu}, Linear Algebra Appl. 428, No. 5--6, 1218--1229 (2008; Zbl 1135.65022) Full Text: DOI OpenURL
Sainvitu, Caroline; Toint, Philippe L. A filter-trust-region method for simple-bound constrained optimization. (English) Zbl 1169.90458 Optim. Methods Softw. 22, No. 5, 835-848 (2007). MSC: 90C30 65K05 90C26 90C06 PDF BibTeX XML Cite \textit{C. Sainvitu} and \textit{P. L. Toint}, Optim. Methods Softw. 22, No. 5, 835--848 (2007; Zbl 1169.90458) Full Text: DOI OpenURL
Xiu, Naihua; Zhang, Jianzhong; Wang, Zhouhong Convergence of the implicit filtering method for constrained optimization of noisy functions. (English) Zbl 1141.90546 Numer. Funct. Anal. Optim. 28, No. 1-2, 127-147 (2007). MSC: 90C30 90C33 65K05 PDF BibTeX XML Cite \textit{N. Xiu} et al., Numer. Funct. Anal. Optim. 28, No. 1--2, 127--147 (2007; Zbl 1141.90546) Full Text: DOI OpenURL
Wang, Chengjing A trust region method with a conic model for nonlinearly constrained optimization. (English) Zbl 1160.90665 Appl. Math., Ser. B (Engl. Ed.) 21, No. 3, 263-275 (2006). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{C. Wang}, Appl. Math., Ser. B (Engl. Ed.) 21, No. 3, 263--275 (2006; Zbl 1160.90665) Full Text: DOI OpenURL
Yin, Hongxia; Han, Jiye; Chen, Zhongwen Global convergence of a trust region algorithm for nonlinear inequality constrained optimization problems. (English) Zbl 1070.65044 Numer. Funct. Anal. Optimization 25, No. 5-6, 571-592 (2004). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 65K05 90C30 90C55 PDF BibTeX XML Cite \textit{H. Yin} et al., Numer. Funct. Anal. Optim. 25, No. 5--6, 571--592 (2004; Zbl 1070.65044) Full Text: DOI OpenURL
Xiu, Naihua; Zhang, Jianzhong Some recent advances in projection-type methods for variational inequalities. (English) Zbl 1018.65083 J. Comput. Appl. Math. 152, No. 1-2, 559-585 (2003). MSC: 65K10 49J40 90C33 PDF BibTeX XML Cite \textit{N. Xiu} and \textit{J. Zhang}, J. Comput. Appl. Math. 152, No. 1--2, 559--585 (2003; Zbl 1018.65083) Full Text: DOI OpenURL
Xiu, N. H.; Zhang, J. Z. Local convergence analysis of projection-type algorithms: unified approach. (English) Zbl 1091.49011 J. Optimization Theory Appl. 115, No. 1, 211-230 (2002). MSC: 49J40 65K10 90C33 PDF BibTeX XML Cite \textit{N. H. Xiu} and \textit{J. Z. Zhang}, J. Optim. Theory Appl. 115, No. 1, 211--230 (2002; Zbl 1091.49011) Full Text: DOI OpenURL
Gould, Nicholas I. M.; Toint, Philippe L. An iterative working-set method for large-scale nonconvex quadratic programming. (English) Zbl 1012.65054 Appl. Numer. Math. 43, No. 1-2, 109-128 (2002). MSC: 65K05 65F10 65F35 90C06 90C20 90C52 PDF BibTeX XML Cite \textit{N. I. M. Gould} and \textit{P. L. Toint}, Appl. Numer. Math. 43, No. 1--2, 109--128 (2002; Zbl 1012.65054) Full Text: DOI OpenURL
Xiu, Naihua; Wu, Fang A feasible trust region method for nonlinear inequality constrained optimization. (English) Zbl 0910.90249 Optimization 43, No. 3, 257-282 (1998). MSC: 90C30 49M37 65K05 PDF BibTeX XML Cite \textit{N. Xiu} and \textit{F. Wu}, Optimization 43, No. 3, 257--282 (1998; Zbl 0910.90249) Full Text: DOI OpenURL
Conn, A. R.; Gould, Nick; Toint, Ph. L. Numerical experiments with the Lancelot package (Release \(A\)) for large-scale nonlinear optimization. (English) Zbl 0848.90109 Math. Program. 73, No. 1 (A), 73-110 (1996). MSC: 90C30 65K05 90C06 PDF BibTeX XML Cite \textit{A. R. Conn} et al., Math. Program. 73, No. 1 (A), 73--110 (1996; Zbl 0848.90109) Full Text: DOI OpenURL
Martínez, José Mario; Santos, Sandra Augusta A trust-region strategy for minimization on arbitrary domains. (English) Zbl 0835.90092 Math. Program. 68, No. 3 (A), 267-301 (1995). MSC: 90C30 90-08 PDF BibTeX XML Cite \textit{J. M. Martínez} and \textit{S. A. Santos}, Math. Program. 68, No. 3 (A), 267--301 (1995; Zbl 0835.90092) Full Text: DOI OpenURL
Heinkenschloss, M. On the solution of a two ball trust region subproblem. (English) Zbl 0819.90067 Math. Program. 64, No. 3 (A), 249-276 (1994). MSC: 90C20 90-08 PDF BibTeX XML Cite \textit{M. Heinkenschloss}, Math. Program. 64, No. 3 (A), 249--276 (1994; Zbl 0819.90067) Full Text: DOI OpenURL
Zhu, D. T. Convergence of a projected gradient method with trust region for nonlinear constrained optimization. (English) Zbl 0814.65061 Optimization 23, No. 3, 215-235 (1992). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{D. T. Zhu}, Optimization 23, No. 3, 215--235 (1992; Zbl 0814.65061) Full Text: DOI OpenURL
Bierlaire, M.; Toint, Ph. L.; Tuyttens, D. On iterative algorithms for linear least squares problems with bound constraints. (English) Zbl 0722.65019 Linear Algebra Appl. 143, 111-143 (1991). Reviewer: S.Zlobec (Montreal) MSC: 65F20 65F10 65K05 90C06 PDF BibTeX XML Cite \textit{M. Bierlaire} et al., Linear Algebra Appl. 143, 111--143 (1991; Zbl 0722.65019) Full Text: DOI OpenURL
Burke, James V.; Moré, Jorge J.; Toraldo, Gerardo Convergence properties of trust region methods for linear and convex constraints. (English) Zbl 0711.90060 Math. Program., Ser. A 47, No. 3, 305-336 (1990). Reviewer: A.Zilinskas MSC: 90C20 65K05 90C52 90-08 PDF BibTeX XML Cite \textit{J. V. Burke} et al., Math. Program. 47, No. 3 (A), 305--336 (1990; Zbl 0711.90060) Full Text: DOI OpenURL
Toint, Ph. L.; Tuyttens, D. On large scale nonlinear network optimization. (English) Zbl 0693.90092 Math. Program., Ser. B 48, No. 1, 125-159 (1990). MSC: 90C35 90C30 65K05 90C06 PDF BibTeX XML Cite \textit{Ph. L. Toint} and \textit{D. Tuyttens}, Math. Program. 48, No. 1 (B), 125--159 (1990; Zbl 0693.90092) Full Text: DOI OpenURL