Ichimura, Humio Relative class numbers inside the \(p\)th cyclotomic field. (English) Zbl 1458.11157 Osaka J. Math. 57, No. 4, 949-959 (2020). Reviewer: Antonio M. Oller Marcén (Zaragoza) MSC: 11R29 11R18 PDF BibTeX XML Cite \textit{H. Ichimura}, Osaka J. Math. 57, No. 4, 949--959 (2020; Zbl 1458.11157) Full Text: Euclid OpenURL
Daniels, Harris B.; Lozano-Robledo, Álvaro; Wallace, Erik Bounds of the rank of the Mordell-Weil group of Jacobians of hyperelliptic curves. (English. French summary) Zbl 1475.11120 J. Théor. Nombres Bordx. 32, No. 1, 231-258 (2020). Reviewer: Ana María Botero (Regensburg) MSC: 11G10 14K15 PDF BibTeX XML Cite \textit{H. B. Daniels} et al., J. Théor. Nombres Bordx. 32, No. 1, 231--258 (2020; Zbl 1475.11120) Full Text: DOI arXiv OpenURL
Dummit, David S. A note on the equivalence of the parity of class numbers and the signature ranks of units in cyclotomic fields. (English) Zbl 1453.11138 Nagoya Math. J. 238, 206-214 (2020). MSC: 11R18 11R27 11R29 PDF BibTeX XML Cite \textit{D. S. Dummit}, Nagoya Math. J. 238, 206--214 (2020; Zbl 1453.11138) Full Text: DOI arXiv OpenURL
Ichimura, Humio Triviality of Iwasawa module associated to some abelian fields of prime conductors. (English) Zbl 1429.11198 Abh. Math. Semin. Univ. Hamb. 88, No. 1, 51-66 (2018). MSC: 11R23 11R18 PDF BibTeX XML Cite \textit{H. Ichimura}, Abh. Math. Semin. Univ. Hamb. 88, No. 1, 51--66 (2018; Zbl 1429.11198) Full Text: DOI OpenURL
Fujima, Shoichi; Ichimura, Humio Note on the class number of the \(p\)th cyclotomic field. II. (English) Zbl 1427.11113 Exp. Math. 27, No. 1, 111-118 (2018). MSC: 11R18 11R29 PDF BibTeX XML Cite \textit{S. Fujima} and \textit{H. Ichimura}, Exp. Math. 27, No. 1, 111--118 (2018; Zbl 1427.11113) Full Text: DOI OpenURL
Ichimura, Humio Note on the class number of the \(p\)th cyclotomic field. III. (English) Zbl 1427.11114 Funct. Approximatio, Comment. Math. 57, No. 1, 93-103 (2017). MSC: 11R18 11R29 PDF BibTeX XML Cite \textit{H. Ichimura}, Funct. Approximatio, Comment. Math. 57, No. 1, 93--103 (2017; Zbl 1427.11114) Full Text: DOI Euclid OpenURL
Fujima, Shoichi; Ichimura, Humio Note on the class number of the \(p\)th cyclotomic field. (English) Zbl 1388.11076 Funct. Approximatio, Comment. Math. 52, No. 2, 299-309 (2015). MSC: 11R29 11R18 PDF BibTeX XML Cite \textit{S. Fujima} and \textit{H. Ichimura}, Funct. Approximatio, Comment. Math. 52, No. 2, 299--309 (2015; Zbl 1388.11076) Full Text: DOI Euclid OpenURL
Kim, Myung-Hwan; Lim, Sung-Geun Square classes of totally positive units. (English) Zbl 1148.11055 J. Number Theory 125, No. 1, 1-6 (2007). Reviewer: Claude Levesque (Québec) MSC: 11R27 11R18 11R29 PDF BibTeX XML Cite \textit{M.-H. Kim} and \textit{S.-G. Lim}, J. Number Theory 125, No. 1, 1--6 (2007; Zbl 1148.11055) Full Text: DOI OpenURL
Trojovský, Pavel On divisibility of the class number \(h^+\) of the real cyclotomic fields \(\mathbb Q(\zeta _p+\zeta _p^{-1})\) by primes \(q<10000\). (English) Zbl 0984.11053 Math. Slovaca 50, No. 5, 541-555 (2000). MSC: 11R29 PDF BibTeX XML Cite \textit{P. Trojovský}, Math. Slovaca 50, No. 5, 541--555 (2000; Zbl 0984.11053) Full Text: EuDML OpenURL
Shokrollahi, M. A. Relative class number of imaginary abelian fields of prime conductor below 10000. (English) Zbl 0944.11044 Math. Comput. 68, No. 228, 1717-1728 (1999). Reviewer: Peter Stevenhagen (Amsterdam) MSC: 11Y40 11R29 11R18 PDF BibTeX XML Cite \textit{M. A. Shokrollahi}, Math. Comput. 68, No. 228, 1717--1728 (1999; Zbl 0944.11044) Full Text: DOI OpenURL
Jakubec, Stanislav On divisibility of the class number \(h^{+}\) of the real cyclotomic fields of prime degree \(l\). (English) Zbl 0914.11057 Math. Comput. 67, No. 221, 369-398 (1998). Reviewer: T.Metsänkylä (Turku) MSC: 11R29 11R18 11Y40 PDF BibTeX XML Cite \textit{S. Jakubec}, Math. Comput. 67, No. 221, 369--398 (1998; Zbl 0914.11057) Full Text: DOI OpenURL
Jakubec, S.; Trojovský, P. On divisibility of the class number \(h^+\) of the real cyclotomic fields \(\mathbb{Q}(\zeta_p+\zeta_p^{-1})\) by primes \(q\leq 5000\). (English) Zbl 0895.11044 Abh. Math. Semin. Univ. Hamb. 67, 269-280 (1997). Reviewer: T.Metsänkylä (Turku) MSC: 11R29 11R18 11Y40 PDF BibTeX XML Cite \textit{S. Jakubec} and \textit{P. Trojovský}, Abh. Math. Semin. Univ. Hamb. 67, 269--280 (1997; Zbl 0895.11044) Full Text: DOI OpenURL
Jakubec, S. Connection between congruences \(n^{q-1}\equiv 1 \pmod {q^ 2}\) and divisibility of \(h^ +\). (English) Zbl 0871.11075 Abh. Math. Semin. Univ. Hamb. 66, 151-158 (1996). Reviewer: T.Metsänkylä (Turku) MSC: 11R29 11R18 11R20 PDF BibTeX XML Cite \textit{S. Jakubec}, Abh. Math. Semin. Univ. Hamb. 66, 151--158 (1996; Zbl 0871.11075) Full Text: DOI OpenURL
Jakubec, Stanislav On the divisibility of \(h^+\) by the prime 3. (English) Zbl 0821.11053 Rocky Mt. J. Math. 24, No. 4, 1467-1473 (1994). Reviewer: T.Metsänkylä (Turku) MSC: 11R29 11R18 PDF BibTeX XML Cite \textit{S. Jakubec}, Rocky Mt. J. Math. 24, No. 4, 1467--1473 (1994; Zbl 0821.11053) Full Text: DOI OpenURL
Jakubec, Stanislav On divisibility of \(h^+\) by the prime 5. (English) Zbl 0827.11071 Math. Slovaca 44, No. 5, 651-661 (1994). Reviewer: Tauno Metsänkylä (Turku) MSC: 11R29 11R18 PDF BibTeX XML Cite \textit{S. Jakubec}, Math. Slovaca 44, No. 5, 651--661 (1994; Zbl 0827.11071) Full Text: EuDML OpenURL
Jakubec, Stanislav On divisibility of class number of real abelian fields of prime conductor. (English) Zbl 0788.11052 Abh. Math. Semin. Univ. Hamb. 63, 67-86 (1993). Reviewer: T.Metsänkylä (Turku) MSC: 11R29 11R20 11R27 PDF BibTeX XML Cite \textit{S. Jakubec}, Abh. Math. Semin. Univ. Hamb. 63, 67--86 (1993; Zbl 0788.11052) Full Text: DOI OpenURL
Greither, Cornelius Relative integral normal bases in \({\mathbb{Q}}(\zeta_ p)\). (English) Zbl 0718.11053 J. Number Theory 35, No. 2, 180-193 (1990). Reviewer: L.N.Childs (Albany) MSC: 11R18 11R33 PDF BibTeX XML Cite \textit{C. Greither}, J. Number Theory 35, No. 2, 180--193 (1990; Zbl 0718.11053) Full Text: DOI OpenURL