He, Qihan; Wang, Chunhua; Wang, Da-Bin Construction of solutions for a critical problem with competing potentials via local Pohozaev identities. (English) Zbl 1485.35234 Commun. Contemp. Math. 24, No. 1, Article ID 2050071, 35 p. (2022). MSC: 35J91 35J15 35A01 PDF BibTeX XML Cite \textit{Q. He} et al., Commun. Contemp. Math. 24, No. 1, Article ID 2050071, 35 p. (2022; Zbl 1485.35234) Full Text: DOI OpenURL
Guo, Lun; Li, Qi Multiple high energy solutions for fractional Schrödinger equation with critical growth. (English) Zbl 1481.35144 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 15, 26 p. (2022). MSC: 35J10 35R11 35J61 35B33 35J20 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Q. Li}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 15, 26 p. (2022; Zbl 1481.35144) Full Text: DOI OpenURL
Sang, Yanbin; Liang, Sihua Fractional Kirchhoff-Choquard equation involving Schrödinger term and upper critical exponent. (English) Zbl 1480.35229 J. Geom. Anal. 32, No. 1, Paper No. 5, 47 p. (2022). MSC: 35J62 35R11 35A01 35J20 PDF BibTeX XML Cite \textit{Y. Sang} and \textit{S. Liang}, J. Geom. Anal. 32, No. 1, Paper No. 5, 47 p. (2022; Zbl 1480.35229) Full Text: DOI OpenURL
Zhang, Jian; Liu, Huize; Bao, Xue Bound state solutions for Kirchhoff type equations in dimension two. (English) Zbl 1480.35239 J. Math. Anal. Appl. 507, No. 2, Article ID 125796, 18 p. (2022). MSC: 35J62 35A01 35J20 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Math. Anal. Appl. 507, No. 2, Article ID 125796, 18 p. (2022; Zbl 1480.35239) Full Text: DOI OpenURL
Han, Qi Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations. (English) Zbl 1484.46038 Adv. Nonlinear Anal. 11, 432-453 (2022). MSC: 46E35 35R11 35J20 35P05 35B09 PDF BibTeX XML Cite \textit{Q. Han}, Adv. Nonlinear Anal. 11, 432--453 (2022; Zbl 1484.46038) Full Text: DOI OpenURL
Cingolani, Silvia; Gallo, Marco On the fractional NLS equation and the effects of the potential Well’s topology. (English) Zbl 1487.35010 Adv. Nonlinear Stud. 21, No. 1, 1-40 (2021). MSC: 35A15 35B25 35J20 35Q55 35R11 47J30 58E05 PDF BibTeX XML Cite \textit{S. Cingolani} and \textit{M. Gallo}, Adv. Nonlinear Stud. 21, No. 1, 1--40 (2021; Zbl 1487.35010) Full Text: DOI OpenURL
Figueiredo, Giovany M.; Silva, Leticia S. Existence of positive solutions of a critical system in \(\mathbb{R}^N\). (English) Zbl 07532322 Palest. J. Math. 10, No. 2, 502-532 (2021). MSC: 35J47 35J61 35A01 35J50 58E05 PDF BibTeX XML Cite \textit{G. M. Figueiredo} and \textit{L. S. Silva}, Palest. J. Math. 10, No. 2, 502--532 (2021; Zbl 07532322) Full Text: Link OpenURL
Chen, Mengyao; Li, Qi; Peng, Shuangjie Bound states for fractional Schrödinger-Poisson system with critical exponent. (English) Zbl 1480.35198 Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1819-1835 (2021). MSC: 35J61 35R11 35J50 PDF BibTeX XML Cite \textit{M. Chen} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1819--1835 (2021; Zbl 1480.35198) Full Text: DOI OpenURL
Bartsch, Thomas; Molle, Riccardo; Rizzi, Matteo; Verzini, Gianmaria Normalized solutions of mass supercritical Schrödinger equations with potential. (English) Zbl 07433748 Commun. Partial Differ. Equations 46, No. 9, 1729-1756 (2021). Reviewer: James Bernard Kennedy (Lisboa) MSC: 35J50 35J15 35J60 35Q55 PDF BibTeX XML Cite \textit{T. Bartsch} et al., Commun. Partial Differ. Equations 46, No. 9, 1729--1756 (2021; Zbl 07433748) Full Text: DOI arXiv OpenURL
Yang, Xiaolong Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1476.35009 Comput. Appl. Math. 40, No. 5, Paper No. 171, 25 p. (2021). MSC: 35A01 35R11 35A15 PDF BibTeX XML Cite \textit{X. Yang}, Comput. Appl. Math. 40, No. 5, Paper No. 171, 25 p. (2021; Zbl 1476.35009) Full Text: DOI OpenURL
Gao, Fashun; Zhou, Jiazheng Semiclassical states for critical Choquard equations with critical frequency. (English) Zbl 1479.35405 Topol. Methods Nonlinear Anal. 57, No. 1, 107-133 (2021). MSC: 35J61 35J75 35A15 PDF BibTeX XML Cite \textit{F. Gao} and \textit{J. Zhou}, Topol. Methods Nonlinear Anal. 57, No. 1, 107--133 (2021; Zbl 1479.35405) Full Text: DOI OpenURL
Liu, Zhongyuan Bubble solutions for Hénon type equation with nearly critical exponent in \(\mathbb{R}^N\). (English) Zbl 1473.35296 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112507, 18 p. (2021). MSC: 35J91 35J05 35A01 PDF BibTeX XML Cite \textit{Z. Liu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112507, 18 p. (2021; Zbl 1473.35296) Full Text: DOI OpenURL
Guo, Lun; Li, Qi Multiple positive solutions to critical p-Laplacian equations with vanishing potential. (English) Zbl 1473.35314 Z. Angew. Math. Phys. 72, No. 4, Paper No. 167, 20 p. (2021). MSC: 35J92 35B33 35B09 35A01 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Q. Li}, Z. Angew. Math. Phys. 72, No. 4, Paper No. 167, 20 p. (2021; Zbl 1473.35314) Full Text: DOI OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M.; Molle, Riccardo Multiple positive bound state solutions for a critical Choquard equation. (English) Zbl 1468.81041 Discrete Contin. Dyn. Syst. 41, No. 10, 4887-4919 (2021). MSC: 81Q05 35A15 35B33 35Q40 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Discrete Contin. Dyn. Syst. 41, No. 10, 4887--4919 (2021; Zbl 1468.81041) Full Text: DOI arXiv OpenURL
Gao, Fashun; Liu, Haidong; Moroz, Vitaly; Yang, Minbo High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1465.35176 J. Differ. Equations 287, 329-375 (2021). MSC: 35J47 35J91 35B09 35A02 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Differ. Equations 287, 329--375 (2021; Zbl 1465.35176) Full Text: DOI arXiv OpenURL
He, Xiaoming; Rădulescu, Vicenţiu D. Small linear perturbations of fractional Choquard equations with critical exponent. (English) Zbl 1464.35082 J. Differ. Equations 282, 481-540 (2021). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35A15 35B33 81Q05 PDF BibTeX XML Cite \textit{X. He} and \textit{V. D. Rădulescu}, J. Differ. Equations 282, 481--540 (2021; Zbl 1464.35082) Full Text: DOI OpenURL
Xia, Jiankang; Zhang, Xu Saddle solutions for the critical Choquard equation. (English) Zbl 1459.35216 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021). MSC: 35J91 35A15 35B33 35B06 35J20 PDF BibTeX XML Cite \textit{J. Xia} and \textit{X. Zhang}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021; Zbl 1459.35216) Full Text: DOI OpenURL
Li, Gui-Dong; Li, Yong-Yong; Tang, Chun-Lei Existence and asymptotic behavior of ground state solutions for Schrödinger equations with Hardy potential and Berestycki-Lions type conditions. (English) Zbl 1455.35066 J. Differ. Equations 275, 77-115 (2021). MSC: 35J10 35A01 35A15 PDF BibTeX XML Cite \textit{G.-D. Li} et al., J. Differ. Equations 275, 77--115 (2021; Zbl 1455.35066) Full Text: DOI OpenURL
Ding, Yanheng; Gao, Fashun; Yang, Minbo Semiclassical states for Choquard type equations with critical growth: critical frequency case. (English) Zbl 1454.35085 Nonlinearity 33, No. 12, 6695-6728 (2020). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Ding} et al., Nonlinearity 33, No. 12, 6695--6728 (2020; Zbl 1454.35085) Full Text: DOI arXiv OpenURL
Chen, Yi; Tang, Xianhua Nehari-type ground state solutions for Schrödinger equations with Hardy potential and critical nonlinearities. (English) Zbl 1454.35071 Complex Var. Elliptic Equ. 65, No. 8, 1315-1335 (2020). MSC: 35J10 35J20 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{X. Tang}, Complex Var. Elliptic Equ. 65, No. 8, 1315--1335 (2020; Zbl 1454.35071) Full Text: DOI OpenURL
Liu, Min; Tang, Zhongwei; Wang, Chunhua Infinitely many solutions for a critical Grushin-type problem via local Pohozaev identities. (English) Zbl 1448.35134 Ann. Mat. Pura Appl. (4) 199, No. 5, 1737-1762 (2020). MSC: 35J15 35B09 35B33 PDF BibTeX XML Cite \textit{M. Liu} et al., Ann. Mat. Pura Appl. (4) 199, No. 5, 1737--1762 (2020; Zbl 1448.35134) Full Text: DOI OpenURL
Liu, Haidong; Liu, Zhaoli A coupled Schrödinger system with critical exponent. (English) Zbl 1448.35170 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 145, 28 p. (2020). MSC: 35J47 35B33 35J50 PDF BibTeX XML Cite \textit{H. Liu} and \textit{Z. Liu}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 145, 28 p. (2020; Zbl 1448.35170) Full Text: DOI OpenURL
Sun, Xia; Teng, Kaimin Positive bound states for fractional Schrödinger-Poisson system with critical exponent. (English) Zbl 1445.35312 Commun. Pure Appl. Anal. 19, No. 7, 3735-3768 (2020). Reviewer: Giovany Malcher Figueiredo (Brasília) MSC: 35R11 35B38 53C35 PDF BibTeX XML Cite \textit{X. Sun} and \textit{K. Teng}, Commun. Pure Appl. Anal. 19, No. 7, 3735--3768 (2020; Zbl 1445.35312) Full Text: DOI OpenURL
Musso, Monica; Pimentel, Juliana A semilinear elliptic equation with competing powers and a radial potential. (English) Zbl 1437.35180 J. Anal. Math. 140, No. 1, 283-298 (2020). MSC: 35J05 35B06 35A01 PDF BibTeX XML Cite \textit{M. Musso} and \textit{J. Pimentel}, J. Anal. Math. 140, No. 1, 283--298 (2020; Zbl 1437.35180) Full Text: DOI arXiv OpenURL
Lancelotti, Sergio; Molle, Riccardo Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains. (English) Zbl 1436.35096 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 1, Paper No. 8, 28 p. (2020). MSC: 35J10 35J20 35B33 PDF BibTeX XML Cite \textit{S. Lancelotti} and \textit{R. Molle}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 1, Paper No. 8, 28 p. (2020; Zbl 1436.35096) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo; Zhou, Jiazheng Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. (English) Zbl 1437.35295 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020; Zbl 1437.35295) Full Text: DOI OpenURL
Gao, Fashun; Da Silva, Edcarlos D.; Yang, Minbo; Zhou, Jiazheng Existence of solutions for critical Choquard equations via the concentration-compactness method. (English) Zbl 1437.35213 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921-954 (2020). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921--954 (2020; Zbl 1437.35213) Full Text: DOI arXiv OpenURL
Goel, Divya; Rădulescu, Vicenţiu D.; Sreenadh, K. Coron problem for nonlocal equations involving Choquard nonlinearity. (English) Zbl 1437.35234 Adv. Nonlinear Stud. 20, No. 1, 141-161 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J25 35A15 35J60 35J20 PDF BibTeX XML Cite \textit{D. Goel} et al., Adv. Nonlinear Stud. 20, No. 1, 141--161 (2020; Zbl 1437.35234) Full Text: DOI arXiv OpenURL
Che, Guofeng; Chen, Haibo Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth. (English) Zbl 1437.35254 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 78, 27 p. (2020). MSC: 35J47 35J60 35B33 35A15 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 78, 27 p. (2020; Zbl 1437.35254) Full Text: DOI OpenURL
Wu, Yuanze; Zou, Wenming On a critical Schrödinger system in \(\mathbb{R}^4\) with steep potential wells. (English) Zbl 1440.35059 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111643, 28 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J10 35J47 35B33 35J20 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{W. Zou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111643, 28 p. (2020; Zbl 1440.35059) Full Text: DOI OpenURL
Zhang, Hui; Xu, Junxiang; Zhang, Fubao Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency. (English) Zbl 1433.35065 Z. Angew. Math. Phys. 71, No. 1, Paper No. 5, 15 p. (2020). MSC: 35J47 35J91 35J05 35J10 35J50 PDF BibTeX XML Cite \textit{H. Zhang} et al., Z. Angew. Math. Phys. 71, No. 1, Paper No. 5, 15 p. (2020; Zbl 1433.35065) Full Text: DOI OpenURL
Correia, Jeziel N.; Figueiredo, Giovany M. Existence of positive solution for a fractional elliptic equation in exterior domain. (English) Zbl 1430.35248 J. Differ. Equations 268, No. 5, 1946-1973 (2020). MSC: 35R11 35J60 35J65 PDF BibTeX XML Cite \textit{J. N. Correia} and \textit{G. M. Figueiredo}, J. Differ. Equations 268, No. 5, 1946--1973 (2020; Zbl 1430.35248) Full Text: DOI OpenURL
Zhang, Hui; Zhang, Fubao Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency. (English) Zbl 1430.35072 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111599, 15 p. (2020). MSC: 35J10 35R11 35A15 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{F. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111599, 15 p. (2020; Zbl 1430.35072) Full Text: DOI OpenURL
Carrião, Paulo Cesar; Costa, Augusto César Dos Reis; Miyagaki, Olimpio Hiroshi A class of critical Kirchhoff problem on the hyperbolic space \(\mathbb{H}^n\). (English) Zbl 1435.58002 Glasg. Math. J. 62, No. 1, 109-122 (2020). Reviewer: Leszek Gasiński (Kraków) MSC: 58J05 35R01 35J60 35B33 PDF BibTeX XML Cite \textit{P. C. Carrião} et al., Glasg. Math. J. 62, No. 1, 109--122 (2020; Zbl 1435.58002) Full Text: DOI OpenURL
Cerami, Giovanna; Molle, Riccardo Multiple positive bound states for critical Schrödinger-Poisson systems. (English) Zbl 1437.35252 ESAIM, Control Optim. Calc. Var. 25, Paper No. 73, 29 p. (2019). MSC: 35J47 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{G. Cerami} and \textit{R. Molle}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 73, 29 p. (2019; Zbl 1437.35252) Full Text: DOI arXiv OpenURL
Wu, Huiling Multiple solutions to a linearly coupled elliptic system with critical exponents. (English) Zbl 1431.35048 J. Math. Anal. Appl. 480, No. 1, Article ID 123380, 16 p. (2019). MSC: 35J91 35J47 35B09 PDF BibTeX XML Cite \textit{H. Wu}, J. Math. Anal. Appl. 480, No. 1, Article ID 123380, 16 p. (2019; Zbl 1431.35048) Full Text: DOI OpenURL
Yang, Zhipeng; Yu, Yuanyang; Zhao, Fukun Concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system involving critical exponent. (English) Zbl 1428.35427 Commun. Contemp. Math. 21, No. 6, Article ID 1850027, 46 p. (2019). MSC: 35Q40 35J50 58E05 35B33 35B38 35R11 PDF BibTeX XML Cite \textit{Z. Yang} et al., Commun. Contemp. Math. 21, No. 6, Article ID 1850027, 46 p. (2019; Zbl 1428.35427) Full Text: DOI OpenURL
Xie, Weihong; Chen, Haibo; Shi, Hongxia Multiplicity of positive solutions for Schrödinger-Poisson systems with a critical nonlinearity in \(\mathbb{R}^3\). (English) Zbl 1431.35022 Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2657-2680 (2019). MSC: 35J05 35J10 35J47 35A15 PDF BibTeX XML Cite \textit{W. Xie} et al., Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2657--2680 (2019; Zbl 1431.35022) Full Text: DOI OpenURL
Sun, Juntao; Wu, Tsung-Fang; Feng, Zhaosheng Two positive solutions to non-autonomous Schrödinger-Poisson systems. (English) Zbl 1425.35027 Nonlinearity 32, No. 10, 4002-4032 (2019). MSC: 35J20 35J61 35A01 35B09 PDF BibTeX XML Cite \textit{J. Sun} et al., Nonlinearity 32, No. 10, 4002--4032 (2019; Zbl 1425.35027) Full Text: DOI OpenURL
Guo, Lun; Hu, Tingxi; Peng, Shuangjie; Shuai, Wei Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1422.35077 Calc. Var. Partial Differ. Equ. 58, No. 4, Paper No. 128, 34 p. (2019). MSC: 35J91 35B33 35B09 35J20 PDF BibTeX XML Cite \textit{L. Guo} et al., Calc. Var. Partial Differ. Equ. 58, No. 4, Paper No. 128, 34 p. (2019; Zbl 1422.35077) Full Text: DOI OpenURL
Guo, Yuxia; Liu, Ting; Nie, Jianjun Construction of solutions for the polyharmonic equation via local Pohozaev identities. (English) Zbl 1421.35081 Calc. Var. Partial Differ. Equ. 58, No. 4, Paper No. 123, 33 p. (2019). MSC: 35J30 31B30 35B09 35A01 PDF BibTeX XML Cite \textit{Y. Guo} et al., Calc. Var. Partial Differ. Equ. 58, No. 4, Paper No. 123, 33 p. (2019; Zbl 1421.35081) Full Text: DOI OpenURL
Correia, Jeziel N.; Figueiredo, Giovany M. Existence of positive solution of the equation \((-\Delta )^{s}u+a(x)u=|u|^{2^{*}_{s}-2}u\). (English) Zbl 1415.35119 Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 63, 39 p. (2019). MSC: 35J60 35R11 35A15 35B09 35B33 PDF BibTeX XML Cite \textit{J. N. Correia} and \textit{G. M. Figueiredo}, Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 63, 39 p. (2019; Zbl 1415.35119) Full Text: DOI OpenURL
Xie, Qilin; Yu, Jianshe Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. (English) Zbl 1401.35090 Commun. Pure Appl. Anal. 18, No. 1, 129-158 (2019). MSC: 35J60 47J30 35J20 PDF BibTeX XML Cite \textit{Q. Xie} and \textit{J. Yu}, Commun. Pure Appl. Anal. 18, No. 1, 129--158 (2019; Zbl 1401.35090) Full Text: DOI OpenURL
Zhang, Wei; Li, Guidong; Tang, Chunlei Infinitely many solutions for a class of sublinear Schrödinger equations. (English) Zbl 1459.35111 J. Appl. Anal. Comput. 8, No. 5, 1475-1493 (2018). MSC: 35J10 35A01 35A15 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Appl. Anal. Comput. 8, No. 5, 1475--1493 (2018; Zbl 1459.35111) Full Text: DOI OpenURL
Qian, Xiaoyong; Wang, Jun; Zhu, Maochun Multiple nontrivial solutions for a class of biharmonic elliptic equations with Sobolev critical exponent. (English) Zbl 1427.35032 Math. Probl. Eng. 2018, Article ID 8212785, 12 p. (2018). MSC: 35J40 35J65 35B33 35J91 PDF BibTeX XML Cite \textit{X. Qian} et al., Math. Probl. Eng. 2018, Article ID 8212785, 12 p. (2018; Zbl 1427.35032) Full Text: DOI OpenURL
Wu, Huiling; Chen, Jianqing; Li, Yongqing Existence of positive solutions to a linearly coupled Schrödinger system with critical exponent. (English) Zbl 1402.35097 Commun. Contemp. Math. 20, No. 7, Article ID 1750082, 23 p. (2018). MSC: 35J20 35J60 35Q55 35B09 PDF BibTeX XML Cite \textit{H. Wu} et al., Commun. Contemp. Math. 20, No. 7, Article ID 1750082, 23 p. (2018; Zbl 1402.35097) Full Text: DOI OpenURL
Liu, Jiu; Liu, Tao; Pan, Hui-Lan A result on a non-autonomous Kirchhoff type equation involving critical term. (English) Zbl 1404.35177 Appl. Math. Lett. 85, 82-87 (2018). MSC: 35J60 35B09 PDF BibTeX XML Cite \textit{J. Liu} et al., Appl. Math. Lett. 85, 82--87 (2018; Zbl 1404.35177) Full Text: DOI OpenURL
Figueiredo, Giovany M.; Molica Bisci, Giovanni; Servadei, Raffaella The effect of the domain topology on the number of solutions of fractional Laplace problems. (English) Zbl 1423.35110 Calc. Var. Partial Differ. Equ. 57, No. 4, Paper No. 103, 24 p. (2018). Reviewer: Luigi Rodino (Torino) MSC: 35J61 35R11 PDF BibTeX XML Cite \textit{G. M. Figueiredo} et al., Calc. Var. Partial Differ. Equ. 57, No. 4, Paper No. 103, 24 p. (2018; Zbl 1423.35110) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality. (English) Zbl 1391.35126 Commun. Contemp. Math. 20, No. 4, Article ID 1750037, 22 p. (2018). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, Commun. Contemp. Math. 20, No. 4, Article ID 1750037, 22 p. (2018; Zbl 1391.35126) Full Text: DOI arXiv OpenURL
Ambrosio, Vincenzo Periodic solutions for critical fractional problems. (English) Zbl 1392.35127 Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 45, 31 p. (2018). MSC: 35J60 35R11 35B10 35B33 35A15 PDF BibTeX XML Cite \textit{V. Ambrosio}, Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 45, 31 p. (2018; Zbl 1392.35127) Full Text: DOI arXiv OpenURL
Peng, Shuangjie; Wang, Chunhua; Yan, Shusen Construction of solutions via local Pohozaev identities. (English) Zbl 1392.35148 J. Funct. Anal. 274, No. 9, 2606-2633 (2018). MSC: 35J61 35B33 PDF BibTeX XML Cite \textit{S. Peng} et al., J. Funct. Anal. 274, No. 9, 2606--2633 (2018; Zbl 1392.35148) Full Text: DOI OpenURL
Shahrokhi-Dehkordi, M. S. On a class of \((p,q)\)-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain. (English) Zbl 1391.35170 Commun. Math. 25, No. 1, 13-20 (2017). MSC: 35J92 35J35 35B33 58E05 PDF BibTeX XML Cite \textit{M. S. Shahrokhi-Dehkordi}, Commun. Math. 25, No. 1, 13--20 (2017; Zbl 1391.35170) Full Text: DOI OpenURL
Barletta, Giuseppina; Candito, Pasquale; Marano, Salvatore A.; Perera, Kanishka Multiplicity results for critical \(p\)-Laplacian problems. (English) Zbl 1376.35079 Ann. Mat. Pura Appl. (4) 196, No. 4, 1431-1440 (2017). MSC: 35J92 35B33 PDF BibTeX XML Cite \textit{G. Barletta} et al., Ann. Mat. Pura Appl. (4) 196, No. 4, 1431--1440 (2017; Zbl 1376.35079) Full Text: DOI arXiv OpenURL
Fang, Xiang-Dong Positive solutions for quasilinear Schrödinger equations in \(\mathbb{R}^N\). (English) Zbl 1364.35081 Commun. Pure Appl. Anal. 16, No. 5, 1603-1615 (2017). MSC: 35J20 35J62 49J35 PDF BibTeX XML Cite \textit{X.-D. Fang}, Commun. Pure Appl. Anal. 16, No. 5, 1603--1615 (2017; Zbl 1364.35081) Full Text: DOI OpenURL
Niu, Miaomiao; Tang, Zhongwei Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. (English) Zbl 1387.35555 Discrete Contin. Dyn. Syst. 37, No. 7, 3963-3987 (2017). Reviewer: Gilles Evéquoz (Delémont) MSC: 35Q55 35J65 35R11 35B33 35A15 PDF BibTeX XML Cite \textit{M. Niu} and \textit{Z. Tang}, Discrete Contin. Dyn. Syst. 37, No. 7, 3963--3987 (2017; Zbl 1387.35555) Full Text: DOI OpenURL
Moroz, Vitaly; Van Schaftingen, Jean A guide to the Choquard equation. (English) Zbl 1360.35252 J. Fixed Point Theory Appl. 19, No. 1, 773-813 (2017). MSC: 35Q55 35R09 35J91 PDF BibTeX XML Cite \textit{V. Moroz} and \textit{J. Van Schaftingen}, J. Fixed Point Theory Appl. 19, No. 1, 773--813 (2017; Zbl 1360.35252) Full Text: DOI arXiv Link OpenURL
Xie, Qilin; Ma, Shiwang; Zhang, Xu Bound state solutions of Schrödinger-Poisson system with critical exponent. (English) Zbl 1356.35107 Discrete Contin. Dyn. Syst. 37, No. 1, 605-625 (2017). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{Q. Xie} et al., Discrete Contin. Dyn. Syst. 37, No. 1, 605--625 (2017; Zbl 1356.35107) Full Text: DOI OpenURL
Fan, Haining Multiple positive solutions for Kirchhoff-type problems in \({\mathbb{R}^3}\) involving critical Sobolev exponents. (English) Zbl 1365.35039 Z. Angew. Math. Phys. 67, No. 5, Article ID 129, 27 p. (2016). MSC: 35J62 PDF BibTeX XML Cite \textit{H. Fan}, Z. Angew. Math. Phys. 67, No. 5, Article ID 129, 27 p. (2016; Zbl 1365.35039) Full Text: DOI OpenURL
He, Yi; Li, Gongbao Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. (English) Zbl 1348.35065 Math. Control Relat. Fields 6, No. 4, 551-593 (2016). MSC: 35J20 35J60 35J92 PDF BibTeX XML Cite \textit{Y. He} and \textit{G. Li}, Math. Control Relat. Fields 6, No. 4, 551--593 (2016; Zbl 1348.35065) Full Text: DOI OpenURL
He, Yi Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity. (English) Zbl 1364.35082 J. Differ. Equations 261, No. 11, 6178-6220 (2016). Reviewer: James Bernard Kennedy (Lisboa) MSC: 35J20 35J60 35B09 PDF BibTeX XML Cite \textit{Y. He}, J. Differ. Equations 261, No. 11, 6178--6220 (2016; Zbl 1364.35082) Full Text: DOI OpenURL
Alves, Claudianor O.; Miyagaki, Olimpio H. A critical nonlinear fractional elliptic equation with saddle-like potential in \(\mathbb{R}^N\). (English) Zbl 1346.35205 J. Math. Phys. 57, No. 8, 081501, 17 p. (2016). MSC: 35R11 35J65 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{O. H. Miyagaki}, J. Math. Phys. 57, No. 8, 081501, 17 p. (2016; Zbl 1346.35205) Full Text: DOI arXiv OpenURL
Niu, Miaomiao; Tang, Zhongwei Least energy solutions for nonlinear Schrödinger equations involving the half Laplacian and critical growth. (English) Zbl 1355.35073 J. Fixed Point Theory Appl. 18, No. 2, 367-395 (2016). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35J60 35J20 35Q55 PDF BibTeX XML Cite \textit{M. Niu} and \textit{Z. Tang}, J. Fixed Point Theory Appl. 18, No. 2, 367--395 (2016; Zbl 1355.35073) Full Text: DOI OpenURL
Xie, Qilin; Ma, Shiwang; Zhang, Xu Bound state solutions of Kirchhoff type problems with critical exponent. (English) Zbl 1345.35038 J. Differ. Equations 261, No. 2, 890-924 (2016). Reviewer: Leszek Gasiński (Kraków) MSC: 35J60 47J30 35J20 35B33 PDF BibTeX XML Cite \textit{Q. Xie} et al., J. Differ. Equations 261, No. 2, 890--924 (2016; Zbl 1345.35038) Full Text: DOI OpenURL
Tang, X. H.; Chen, Sitong Weak potential conditions for Schrödinger equations with critical nonlinearities. (English) Zbl 1344.35017 J. Aust. Math. Soc. 100, No. 2, 272-288 (2016). Reviewer: Vassilis G. Papanicolaou (Athena) MSC: 35J10 35J20 35B33 PDF BibTeX XML Cite \textit{X. H. Tang} and \textit{S. Chen}, J. Aust. Math. Soc. 100, No. 2, 272--288 (2016; Zbl 1344.35017) Full Text: DOI OpenURL
Chen, Yaoping; Chen, Jianqing Multiple positive solutions for a semilinear equation with critical exponent and prescribed singularity. (English) Zbl 1329.35150 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 130, 121-137 (2016). MSC: 35J61 35J20 35B09 35B33 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. Chen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 130, 121--137 (2016; Zbl 1329.35150) Full Text: DOI OpenURL
Li, Gongbao; He, Yi Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. (English) Zbl 1323.35037 Discrete Contin. Dyn. Syst. 36, No. 2, 731-762 (2016). MSC: 35J60 35J20 35J92 35B33 35D30 58E05 PDF BibTeX XML Cite \textit{G. Li} and \textit{Y. He}, Discrete Contin. Dyn. Syst. 36, No. 2, 731--762 (2016; Zbl 1323.35037) Full Text: DOI OpenURL
Zhang, Jianjun; Zou, Wenming Solutions concentrating around the saddle points of the potential for critical Schrödinger equations. (English) Zbl 1339.35109 Calc. Var. Partial Differ. Equ. 54, No. 4, 4119-4142 (2015). Reviewer: Petr Tomiczek (Plzeň) MSC: 35J20 35B33 35J60 35Q55 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{W. Zou}, Calc. Var. Partial Differ. Equ. 54, No. 4, 4119--4142 (2015; Zbl 1339.35109) Full Text: DOI OpenURL
Tang, Zhong Wei; Wang, Yan Li Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth. (English) Zbl 1332.35119 Sci. China, Math. 58, No. 11, 2317-2328 (2015). MSC: 35J61 35J20 35Q60 PDF BibTeX XML Cite \textit{Z. W. Tang} and \textit{Y. L. Wang}, Sci. China, Math. 58, No. 11, 2317--2328 (2015; Zbl 1332.35119) Full Text: DOI OpenURL
Anderson Cardoso, J.; Marcos do Ó, João; de Medeiros, Everaldo Hamiltonian elliptic systems involving nonlinear Schrödinger equations with critical growth. (English) Zbl 1329.35143 Z. Angew. Math. Phys. 66, No. 5, 2237-2254 (2015). MSC: 35J50 35J57 35J60 37K05 47J30 PDF BibTeX XML Cite \textit{J. Anderson Cardoso} et al., Z. Angew. Math. Phys. 66, No. 5, 2237--2254 (2015; Zbl 1329.35143) Full Text: DOI OpenURL
He, Yi; Li, Gongbao Standing waves for a class of Kirchhoff type problems in \(\mathbb R^3\) involving critical Sobolev exponents. (English) Zbl 1328.35046 Calc. Var. Partial Differ. Equ. 54, No. 3, 3067-3106 (2015). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35J92 35B33 35B09 PDF BibTeX XML Cite \textit{Y. He} and \textit{G. Li}, Calc. Var. Partial Differ. Equ. 54, No. 3, 3067--3106 (2015; Zbl 1328.35046) Full Text: DOI OpenURL
He, Yi; Li, Gongbao Standing waves for a class of Schrödinger-Poisson equations in \(\mathbb R^{3}\) involving critical Sobolev exponents. (English) Zbl 1326.35106 Ann. Acad. Sci. Fenn., Math. 40, No. 2, 729-766 (2015). MSC: 35J20 35J60 35J92 35B09 PDF BibTeX XML Cite \textit{Y. He} and \textit{G. Li}, Ann. Acad. Sci. Fenn., Math. 40, No. 2, 729--766 (2015; Zbl 1326.35106) Full Text: DOI arXiv OpenURL
Cerami, G.; Zhong, X.; Zou, W. On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem. (English) Zbl 1327.35089 Calc. Var. Partial Differ. Equ. 54, No. 2, 1793-1829 (2015). Reviewer: Marius Ghergu (Dublin) MSC: 35J25 35J20 35B33 35J60 PDF BibTeX XML Cite \textit{G. Cerami} et al., Calc. Var. Partial Differ. Equ. 54, No. 2, 1793--1829 (2015; Zbl 1327.35089) Full Text: DOI OpenURL
Guo, Yuxia; Tang, Zhongwei Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells. (English) Zbl 1326.35347 J. Differ. Equations 259, No. 11, 6038-6071 (2015). Reviewer: Santosh Bhattarai (Buffalo) MSC: 35Q55 35J65 35B33 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Z. Tang}, J. Differ. Equations 259, No. 11, 6038--6071 (2015; Zbl 1326.35347) Full Text: DOI OpenURL
Liu, Jiu; Liao, Jia-Feng; Tang, Chun-Lei Positive solutions for Kirchhoff-type equations with critical exponent in \(\mathbb{R}^N\). (English) Zbl 1319.35021 J. Math. Anal. Appl. 429, No. 2, 1153-1172 (2015). MSC: 35J20 35B09 35B33 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Math. Anal. Appl. 429, No. 2, 1153--1172 (2015; Zbl 1319.35021) Full Text: DOI OpenURL
Guo, Yuxia; Tang, Zhongwei Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. (English) Zbl 1346.35071 Discrete Contin. Dyn. Syst. 35, No. 8, 3393-3415 (2015). MSC: 35J91 35Q55 35B33 81Q05 65N15 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Z. Tang}, Discrete Contin. Dyn. Syst. 35, No. 8, 3393--3415 (2015; Zbl 1346.35071) Full Text: DOI OpenURL
Montenegro, Marcos; De Moura, Renato J. On the influence of second order uniformly elliptic operators in nonlinear problems. (English) Zbl 1312.35091 Math. Nachr. 288, No. 2-3, 281-294 (2015). MSC: 35J60 35B33 49K20 35B09 PDF BibTeX XML Cite \textit{M. Montenegro} and \textit{R. J. De Moura}, Math. Nachr. 288, No. 2--3, 281--294 (2015; Zbl 1312.35091) Full Text: DOI OpenURL
Han, Qi Positive solutions of elliptic problems involving both critical Sobolev nonlinearities on exterior regions. (English) Zbl 1325.35021 Monatsh. Math. 176, No. 1, 107-141 (2015); addendum ibid. 177, No. 2, 325-327 (2015). Reviewer: Marcelo Furtado (Brasília) MSC: 35J20 46E35 35J66 46E22 35B09 PDF BibTeX XML Cite \textit{Q. Han}, Monatsh. Math. 176, No. 1, 107--141 (2015; Zbl 1325.35021) Full Text: DOI OpenURL
Shen, Zifei; Gao, Fashun On the existence of solutions for the critical fractional Laplacian equation in \(\mathbb{R}^N\). (English) Zbl 1470.35411 Abstr. Appl. Anal. 2014, Article ID 143741, 10 p. (2014). MSC: 35R11 35B33 PDF BibTeX XML Cite \textit{Z. Shen} and \textit{F. Gao}, Abstr. Appl. Anal. 2014, Article ID 143741, 10 p. (2014; Zbl 1470.35411) Full Text: DOI OpenURL
Zhang, Huixing; Zhang, Xiangzhi Existence of nontrivial solutions for a critical perturbed quasilinear elliptic system. (English) Zbl 1310.35108 J. Funct. Spaces 2014, Article ID 758963, 8 p. (2014). MSC: 35J50 35J92 35J48 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{X. Zhang}, J. Funct. Spaces 2014, Article ID 758963, 8 p. (2014; Zbl 1310.35108) Full Text: DOI OpenURL
Zhang, Jianjun; Chen, Zhijie; Zou, Wenming Standing waves for nonlinear Schrödinger equations involving critical growth. (English) Zbl 1317.35247 J. Lond. Math. Soc., II. Ser. 90, No. 3, 827-844 (2014). MSC: 35Q55 35B25 35B33 35J61 35B09 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Lond. Math. Soc., II. Ser. 90, No. 3, 827--844 (2014; Zbl 1317.35247) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M. Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field. (English) Zbl 1304.35630 Milan J. Math. 82, No. 2, 389-405 (2014). MSC: 35Q55 35A15 35H30 58E05 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{G. M. Figueiredo}, Milan J. Math. 82, No. 2, 389--405 (2014; Zbl 1304.35630) Full Text: DOI arXiv OpenURL
Deng, Yinbin; Peng, Shuangjie; Wang, Li Infinitely many radial solutions to elliptic systems involving critical exponents. (English) Zbl 1277.35044 Discrete Contin. Dyn. Syst. 34, No. 2, 461-475 (2014). MSC: 35B33 35J60 35J57 35B07 PDF BibTeX XML Cite \textit{Y. Deng} et al., Discrete Contin. Dyn. Syst. 34, No. 2, 461--475 (2014; Zbl 1277.35044) Full Text: DOI OpenURL
Tang, Zhongwei Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. (English) Zbl 1291.35366 Commun. Pure Appl. Anal. 13, No. 1, 237-248 (2014). MSC: 35Q55 35J65 PDF BibTeX XML Cite \textit{Z. Tang}, Commun. Pure Appl. Anal. 13, No. 1, 237--248 (2014; Zbl 1291.35366) Full Text: DOI OpenURL
Guo, Qianqiao; Han, Junqiang; Niu, Pengcheng Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains. (English) Zbl 1250.35083 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 15, 5765-5786 (2012). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J25 35J60 58E05 35B09 35J20 35B06 PDF BibTeX XML Cite \textit{Q. Guo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 15, 5765--5786 (2012; Zbl 1250.35083) Full Text: DOI OpenURL
Chen, Wenyi; Wei, Juncheng; Yan, Shusen Infinitely many solutions for the Schrödinger equations in \(\mathbb R^N\) with critical growth. (English) Zbl 1235.35104 J. Differ. Equations 252, No. 3, 2425-2447 (2012). MSC: 35J40 35J10 35Q55 35B40 35B45 PDF BibTeX XML Cite \textit{W. Chen} et al., J. Differ. Equations 252, No. 3, 2425--2447 (2012; Zbl 1235.35104) Full Text: DOI OpenURL
Li, Yuanyuan; Guo, Qianqiao; Niu, Pengcheng Global compactness results for quasilinear elliptic problems with combined critical Sobolev-Hardy terms. (English) Zbl 1205.35109 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 4, 1445-1464 (2011). MSC: 35J62 35J20 58E50 35A01 PDF BibTeX XML Cite \textit{Y. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 4, 1445--1464 (2011; Zbl 1205.35109) Full Text: DOI OpenURL
Bezerra do Ó, João M.; Miyagaki, Olímpio H.; Soares, Sérgio H. M. Soliton solutions for quasilinear Schrödinger equations with critical growth. (English) Zbl 1182.35205 J. Differ. Equations 248, No. 4, 722-744 (2010). MSC: 35Q55 35J60 35B33 35C08 PDF BibTeX XML Cite \textit{J. M. Bezerra do Ó} et al., J. Differ. Equations 248, No. 4, 722--744 (2010; Zbl 1182.35205) Full Text: DOI Link OpenURL
Ding, Ling; Xiao, Shi-Wu Multiple positive solutions for a critical quasilinear elliptic system. (English) Zbl 1182.35101 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 5, 2592-2607 (2010). MSC: 35J57 35J92 35J50 PDF BibTeX XML Cite \textit{L. Ding} and \textit{S.-W. Xiao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 5, 2592--2607 (2010; Zbl 1182.35101) Full Text: DOI OpenURL
Rabelo, Paulo Positive solutions for elliptic equations with supercritical nonlinearity. (English) Zbl 1181.35094 Adv. Nonlinear Stud. 9, No. 3, 523-535 (2009). MSC: 35J61 35J20 35J91 35Q55 49J35 PDF BibTeX XML Cite \textit{P. Rabelo}, Adv. Nonlinear Stud. 9, No. 3, 523--535 (2009; Zbl 1181.35094) Full Text: DOI OpenURL
Guo, Qianqiao; Niu, Pengcheng; Wang, Yongzhong Global compactness results for singular quasilinear elliptic problems with critical Sobolev exponents and applications. (English) Zbl 1167.35337 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 7-8, 2944-2963 (2009). MSC: 35J20 35J60 58E50 PDF BibTeX XML Cite \textit{Q. Guo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 7--8, 2944--2963 (2009; Zbl 1167.35337) Full Text: DOI OpenURL
Alves, Claudianor O.; de Holanda, Angelo R. F.; Fernandes, José A. Existence of positive solution for a quasi-linear problem with critical growth in \(\mathbb R^N_+\). (English) Zbl 1178.35170 Glasg. Math. J. 51, No. 2, 367-383 (2009). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35J62 35J25 35C20 35B33 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Glasg. Math. J. 51, No. 2, 367--383 (2009; Zbl 1178.35170) Full Text: DOI OpenURL
Arioli, Gianni; Szulkin, Andrzej; Zou, Wenming Multibump solutions and critical groups. (English) Zbl 1175.37066 Trans. Am. Math. Soc. 361, No. 6, 3159-3187 (2009). Reviewer: Hans-Bert Rademacher (Leipzig) MSC: 37J45 34C28 35J20 35Q55 PDF BibTeX XML Cite \textit{G. Arioli} et al., Trans. Am. Math. Soc. 361, No. 6, 3159--3187 (2009; Zbl 1175.37066) Full Text: DOI OpenURL
Furtado, Marcelo F.; Maia, Liliane A.; Medeiros, Everaldo S. Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential. (English) Zbl 1168.35433 Adv. Nonlinear Stud. 8, No. 2, 353-373 (2008). MSC: 35Q55 35J60 35J20 PDF BibTeX XML Cite \textit{M. F. Furtado} et al., Adv. Nonlinear Stud. 8, No. 2, 353--373 (2008; Zbl 1168.35433) Full Text: DOI Link OpenURL
Wan, Youyan; Yang, Jianfu Multiple solutions for inhomogeneous critical semilinear elliptic problems. (English) Zbl 1151.35362 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 9, 2569-2593 (2008). MSC: 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Wan} and \textit{J. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 9, 2569--2593 (2008; Zbl 1151.35362) Full Text: DOI OpenURL
Ding, Ling; Tang, Chun-Lei Existence and multiplicity of positive solutions for a class of semilinear elliptic equations involving Hardy term and Hardy-Sobolev critical exponents. (English) Zbl 1142.35029 J. Math. Anal. Appl. 339, No. 2, 1073-1083 (2008). Reviewer: Marlène Frigon (Montréal) MSC: 35J60 35J15 35J20 35B33 35B50 PDF BibTeX XML Cite \textit{L. Ding} and \textit{C.-L. Tang}, J. Math. Anal. Appl. 339, No. 2, 1073--1083 (2008; Zbl 1142.35029) Full Text: DOI OpenURL
Micheletti, Anna Maria; Pistoia, Angela; Visetti, Daniela On the number of blowing-up solutions to a nonlinear elliptic equation with critical growth. (English) Zbl 1163.35009 Rocky Mt. J. Math. 37, No. 1, 291-325 (2007). Reviewer: Andrey E. Shishkov (Donetsk) MSC: 35J20 35J60 35B45 35B40 PDF BibTeX XML Cite \textit{A. M. Micheletti} et al., Rocky Mt. J. Math. 37, No. 1, 291--325 (2007; Zbl 1163.35009) Full Text: DOI Euclid OpenURL
Wei, Juncheng; Yan, Shusen New solutions for nonlinear Schrödinger equations with critical nonlinearity. (English) Zbl 1128.35014 J. Differ. Equations 237, No. 2, 446-472 (2007). Reviewer: Yaping Liu (Pittsburg) MSC: 35B25 35B45 35J60 PDF BibTeX XML Cite \textit{J. Wei} and \textit{S. Yan}, J. Differ. Equations 237, No. 2, 446--472 (2007; Zbl 1128.35014) Full Text: DOI OpenURL
Dávila, Juan; del Pino, Manuel; Musso, Monica; Wei, Juncheng Standing waves for supercritical nonlinear Schrödinger equations. (English) Zbl 1124.35082 J. Differ. Equations 236, No. 1, 164-198 (2007). Reviewer: Nils Ackermann (México, D.F.) MSC: 35Q55 37K40 35Q51 PDF BibTeX XML Cite \textit{J. Dávila} et al., J. Differ. Equations 236, No. 1, 164--198 (2007; Zbl 1124.35082) Full Text: DOI OpenURL
Cerami, Giovanna; Molle, Riccardo Multiple positive solutions for nonautonomous quasicritical elliptic problems in unbounded domains. (English) Zbl 1229.35090 Adv. Nonlinear Stud. 6, No. 2, 233-254 (2006). MSC: 35J65 35J20 35J25 PDF BibTeX XML Cite \textit{G. Cerami} and \textit{R. Molle}, Adv. Nonlinear Stud. 6, No. 2, 233--254 (2006; Zbl 1229.35090) Full Text: DOI OpenURL
Chen, Jianqing Multiple positive and sign-changing solutions for a singular Schrödinger equation with critical growth. (English) Zbl 1093.35021 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64, No. 3, 381-400 (2006). MSC: 35J20 35J70 35B33 PDF BibTeX XML Cite \textit{J. Chen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64, No. 3, 381--400 (2006; Zbl 1093.35021) Full Text: DOI OpenURL