Noiri, Takashi; Popa, Valeriu A unified theory of weak continuity for functions. (English) Zbl 1164.54326 Rend. Circ. Mat. Palermo (2) 51, No. 3, 439-464 (2002). Matching several previous publications of the authors and also the reviewer (see e.g. D. Gauld, S. Greenwood and I. Reilly [On variations of continuity, Topology Atlas Invited Contributions, 4, 1–54 (1999)]), the authors present a notion of ”continuity” which is exemplified by a number of notions near to continuity. The basic concept is a minimal structure (a subfamily of the power set containing the empty set and the whole space) which replaces the topologies. The focus is on the resulting notions of (weak) \(M\)-continuity and related notions. Reviewer: David B. Gauld (Auckland) Cited in 17 Documents MSC: 54C08 Weak and generalized continuity Keywords:\(m\)-structure; weakly \(M\)-continuous; \(m\)-compact; \(m\)-connected; strongly \(m\)-closed graph PDFBibTeX XMLCite \textit{T. Noiri} and \textit{V. Popa}, Rend. Circ. Mat. Palermo (2) 51, No. 3, 439--464 (2002; Zbl 1164.54326) Full Text: DOI References: [1] Abd El-Monsef, M. E.; El-Deeb, S. N.; Mahmoud, R. A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, 77-90 (1983) · Zbl 0577.54008 [2] Abd El-Monsef, M. E.; Mahmoud, R. A.; Lashin, E. R., β-closure and β-interior, J. Fac. Ed. Ain Shams Univ., 10, 235-245 (1986) · Zbl 0616.54001 [3] Abd El-Monsef, M. E.; Mahmoud, R. A.; Nasef, A. A., A class of functions stronger than M-precontinuity, preirresolute and a-functions, Quatar Univ. Sci. Bull., 10, 41-48 (1990) · Zbl 0988.54501 [4] Arya, S. P.; Bhamini, M. P., Some weaker forms of semi-continuous functions, Ganita, 33, 124-134 (1982) · Zbl 0586.54017 [5] Carnahan D. A.,Some Properties Related to Compactness in Topological Spaces, Ph. D. Thesis, Univ. of Arkansas, 1973. [6] Chew, J.; Tong, J. C., Some remarks on weak continuiuty, Amer. Math. Monthly, 98, 931-934 (1991) · Zbl 0764.54007 · doi:10.2307/2324151 [7] Crossley, S. G.; Hildebrand, S. K., Semi-closure, Texas J. Sci., 22, 99-112 (1971) [8] Costovici, Gh., Other elementary properties of the mappings of topological spaces, Bul. Inst. Politehn. Iaşi, Sect. I, 26, 30, 19-21 (1980) · Zbl 0479.54006 [9] Császár Á.,General topology, generalized continuity, Acta Math. Hungar. (to appear). · Zbl 1006.54003 [10] Debray A.,Investigations of Some Properties of Topology and Certain Allied Structures, Ph. D. Thesis, Univ. of Calcutta, 1999. [11] Di Maio, G.; Noiri, T., On s-closed spaces, Indian J. Pure Appl. Math., 18, 226-233 (1987) · Zbl 0625.54031 [12] Di Maio, G.; Noiri, T., Weak and strong forms of irresolute functions, Suppl. Rend. Circ. Mat. Palermo, 18, 2, 255-273 (1988) · Zbl 0663.54010 [13] Dontchev, J.; Ganster, M., Some comments on θ-irresolute and quasi-irresolute functions, Serdica Math. J., 21, 67-74 (1995) · Zbl 0826.54011 [14] Dontchev, J.; Ganster, M.; Noiri, T., On p-closed spaces, Internat. J. Math. Math. Sci., 24, 203-212 (2000) · Zbl 0965.54024 · doi:10.1155/S016117120000226X [15] Dorsett, C., Semi-regular spaces, Soochow J. Math., 8, 45-53 (1982) · Zbl 0527.54017 [16] El-Deeb, S. N.; Hasanein, I. A.; Mashhour, A. S.; Noiri, T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27, 75, 311-315 (1983) · Zbl 0524.54016 [17] Espelie, M. S.; Joseph, J. E., Remarks on two weak forms of continuity, Canad. Math. Bull., 25, 59-63 (1982) · Zbl 0523.54009 [18] Jafari S.,Some properties of pre-θ-irresolute functions (preprint). [19] Jafari S., Noiri T.,Decompositions of s-continuity, Far East J. Math. Sci. Special Volume, Part II, (1997), 253-256. [20] Jafari, S.; Noiri, T., On almost weakly continuous functions, Demonstratio Math., 31, 437-443 (1998) · Zbl 0908.54006 [21] Jafari, S.; Noiri, T., Some properties of almost s-continuous functions, Rend. Circ. Mat. Palermo, 48, 571-582 (1999) · Zbl 0942.54008 · doi:10.1007/BF02844346 [22] Jafari, S.; Noiri, T., On β-quasi-irresolute functions, Mem. Fac. Sci. Kochi Univ. Ser. Math., 21, 53-62 (2000) · Zbl 0945.54013 [23] Jafari S., Noiri T.,On sober β-irresoluteness (preprint). [24] Janković, D. S., θ-regular spaces, Internat. J. Math. Math. Sci., 8, 615-619 (1985) · Zbl 0577.54012 · doi:10.1155/S0161171285000667 [25] Kar, A., Properties of weakly semi-continuous functions, Soochow J. Math., 15, 65-77 (1989) · Zbl 0708.54006 [26] Kar, A.; Bhattacharyya, P., Weakly semi-continuous functions, J. Indian Acad. Math., 8, 83-93 (1986) · Zbl 0624.54010 [27] Levine, N., A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68, 44-46 (1961) · Zbl 0100.18601 · doi:10.2307/2311363 [28] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41 (1963) · Zbl 0113.16304 · doi:10.2307/2312781 [29] Lo Faro, G., On strongly α-irresolute mappings, Indian J. Pure Appl. Math., 18, 146-151 (1987) · Zbl 0617.54012 [30] Long, P. E.; Herrington, L. L., Functions with strongly-closed graphs, Boll. Un. Mat. Ital., 12, 4, 381-384 (1975) · Zbl 0326.54009 [31] Maki H.,On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, 13-18. [32] Marcus, S., Sur les fonctions quasicontinues au sens de S. Kempisty, Colloq. Math., 8, 47-53 (1961) · Zbl 0099.04501 [33] Mashhour, A. S.; Abd El-Monsef, M. E.; El-Deep, S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53 (1982) · Zbl 0571.54011 [34] Mashhour, A. S.; Abd El-Monsef, M. E.; Hasanein, I. A.; Noiri, T., Strongly compact spaces, Delta J. Sci., 8, 30-46 (1984) [35] Mashhour, A. S.; Hasanein, I. A.; El-Deeb, S. N., α-continuous and α-open mappings, Acta Math. Hungar., 41, 213-218 (1983) · Zbl 0534.54006 · doi:10.1007/BF01961309 [36] Mukherjee, M. N.; Basu, C. K., On semi-θ-closed sets, semi-θ-connectedness and some associated mappings, Bull. Calcutta Math. Soc., 83, 227-238 (1991) · Zbl 0771.54001 [37] Neubrunnová, A., On certain generalizations of the notions of continuity, Mat. Časopis, 23, 374-380 (1973) · Zbl 0267.54007 [38] Njåstad, O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965) · Zbl 0137.41903 [39] Noiri, T., On weakly continuous mappings, Proc. Amer. Math. Soc., 46, 120-124 (1974) · Zbl 0294.54013 · doi:10.2307/2040493 [40] Noiri, T., Properties of some weak forms of continuity, Internat. J. Math. Math. Sci., 10, 97-111 (1987) · Zbl 0617.54008 · doi:10.1155/S0161171287000139 [41] Noiri, T., Weakly α-continuous functions, Internat. J. Math. Math. Sci., 10, 483-490 (1987) · Zbl 0638.54012 · doi:10.1155/S0161171287000565 [42] Noiri, T., A note on weakly quasi continuous functions, Internat. J. Math. Math. Sci., 12, 413-415 (1989) · Zbl 0671.54024 · doi:10.1155/S0161171289000499 [43] Noiri, T.; Ahmad, B.; Khan, M., Almost s-continuous functions, Kyungpook Math. J., 35, 311-322 (1995) · Zbl 0843.54017 [44] Pal, M. C.; Bhattacharyya, P., Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc., 19, 63-75 (1996) · Zbl 0885.54010 [45] Park, J. H.; Ha, H. Y., A note on weakly quasi continuous functions, Internat. J. Math. Math. Sci., 19, 767-772 (1996) · Zbl 0863.54011 · doi:10.1155/S0161171296001068 [46] Park, J. H.; Lee, B. Y.; Son, M. J., On δ-semiopen sets in topological spaces, J. Indian Acad. Math., 19, 59-67 (1997) · Zbl 0904.54002 [47] Paul, R.; Bhattacharyya, P., Quasi-precontinuous functions, J. Indian Acad. Math., 14, 115-126 (1992) · Zbl 0871.54018 [48] Paul, R.; Bhattacharyya, P., Properties of quasi-precontinuous functions, Indian J. Pure Appl. Math., 27, 475-486 (1996) · Zbl 0871.54017 [49] Popa, V., Characterizations of weakly continuous functions (Romanian), Stud. Cerc. Mat., 34, 277-280 (1982) · Zbl 0489.54005 [50] Popa, V., Some properties of quasi-irresolute functions, Univ. BacĂu Stud. Cerc. Stiin. Ser. Mat., 5, 83-87 (1995) · Zbl 0882.54010 [51] Popa, V.; Noiri, T., On weakly quasicontinuous functions, Glasnik Mat., 24, 44, 391-399 (1989) · Zbl 0707.54013 [52] Popa, V.; Noiri, T., Almost weakly continuous functions, Demonstratio Math., 25, 241-251 (1992) · Zbl 0789.54014 [53] Popa, V.; Noiri, T., Weakly β-continuous functions, Anal. Univ. TimiŞoara, Ser. Mat. Inform., 32, 83-92 (1994) · Zbl 0864.54009 [54] Popa, V.; Noiri, T., On M-continuous functions, Anal. Univ. “Dunarea de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18, 23, 31-41 (2000) [55] Popa, V.; Noiri, T., On weakly (τ, m)-continuous functions, Rend Circ. Mat. Palermo, 51, 295-316 (2002) · Zbl 1098.54508 · doi:10.1007/BF02871656 [56] Popa V., Noiri T.,On weakly (τ, β)-continuous functions (preprint). · Zbl 1084.54510 [57] Popa, V.; Stan, C., On a decomposition of quasicontinuity in topological spaces (Romanian), Stud. Cerc. Mat., 25, 41-43 (1973) · Zbl 0255.54008 [58] Porter, J.; Thomas, J., On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138, 159-170 (1969) · Zbl 0175.49501 · doi:10.2307/1994905 [59] Raychaudhuri S., Study of Some Mappings, Covering Properties and Allied Concepts in Topological Spaces, Ph. D. Thesis, Univ. of Calcutta, 1994. [60] Raychaudhuri, S.; Mukherjee, M. N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21, 357-366 (1993) · Zbl 0808.54010 [61] Raychaudhuri, S.; Mukherjee, M. N., δ_p-closedness for topological spaces, J. Indian Acad. Math., 18, 89-99 (1996) · Zbl 0893.54019 [62] Rose, D. A., A note on Levine’s decomposition of continuity, Indian J. Pure Appl. Math., 21, 985-987 (1990) · Zbl 0726.54009 [63] Sen, A. K.; Bhattacharyya, P., On weakly α-continuous functions, Tamkang J. Math., 24, 445-460 (1993) · Zbl 0797.54025 [64] Veličko, N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 78, 103-118 (1968) · Zbl 0183.27302 [65] Yalvaç, T. H., On weak continuity and weak δ-continuity, Anal. Numér. Théor. Approx., 19, 177-183 (1990) · Zbl 0729.54005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.