Cui, Chengri; Wen, Songlong General Orlicz–Pettis theorem. (English) Zbl 1105.46008 Z. Anal. Anwend. 24, No. 3, 637-648 (2005). Let \(G\) be a topological group and \(E\) a non-empty set. Let \(F\subset G^E\). Then \(E,F\) is called a \(G\) valued duality pair. Let \(w(E,F)\) (\(w(F,E)\)) be the weakest topology on \(E\) (\(F\)) such that all the maps \(x\mapsto f(x)\) (\(f\mapsto f(x)\)) for \(f\in F\) (\(x\in E\)) are continuous. A sequence \(\{x_j\}\) in \(E\) is \(w(E,F)\) subseries convergent if for every \( \sigma \subset\mathbb{N}\) there exists \(x_{\sigma }\in E\) such that \(\sum_{j\in \sigma }f(x_j)=f(x_{\sigma })\) for every \(f\in F\). Let \(\mathcal{F}\) be a family of subsets of \(F\). A sequence \(\{x_j\}\) in \(E\) is subseries convergent in the topology of uniform convergence on \(\mathcal{F}\) if for every \(B\in \mathcal{F}\) and for every \(\sigma \subset\mathbb{N}\) there exists \(x_{\sigma }\in E\) such that \(\sum_{j\in \sigma}f(x_{j})=f(x_{\sigma })\) uniformly for \(f\in B\). A subset \(B\subset F\) is conditionally \(w(F,E)\) sequentially compact if every sequence \(\{f_j\}\) has a subsequence \(\{f_{n_j}\}\) such that \(\lim f_{n_j}(x)\) exists for every \(x\in E\). The authors prove a very abstract version of the Orlicz–Pettis theorem. They show that if \(\{x_j\}\) is \(w(E,F)\) subseries convergent, then \(\{x_j\}\) is subseries convergent in the topology of uniform convergence on conditionally \(w(F,E)\) sequentially compact (\(w(F,E)\) compact, \(w(F,E)\) countably compact) subsets of \(F\). Applications of the abstract Orlicz–Pettis theorem are given to the Nikodym convergence theorem, the Hahn–Schur theorem, and several other versions of the Orlicz–Pettis theorem. Reviewer: Charles Swartz (Las Cruces) MSC: 46A99 Topological linear spaces and related structures Keywords:\(G\) valued duality pair; Orlicz-Pettis theorem PDF BibTeX XML Cite \textit{C. Cui} and \textit{S. Wen}, Z. Anal. Anwend. 24, No. 3, 637--648 (2005; Zbl 1105.46008) Full Text: DOI References: [1] Antosik, P. and C. Swartz: Matrix Methods in Analysis. Lecture Notes Math. 1113. Heidelberg: Springer 1985. · Zbl 0564.46001 [2] Darst, R. B.: The Vitali-Hahn-Saks and Nikodym theorems for additive set functions. Bull. Amer. Math. Soc. 76 (1970), 1297 - 1298. · Zbl 0202.33802 [3] Dierolf, P.: Theorems of the Orlicz-Pettis type for locally convex spaces. Manuscripta Math. 20 (1977), 73 - 94. · Zbl 0339.46003 [4] Diestel, J. and J. J. Uhl: Vector Measures . Math. surveys 15. Providence (R.I.): Amer. Math. Soc. 1977. [5] Dinculeanu, N.: Weak compactness and uniform convergence of operators in spaces of Bochner integrable functions. J. Math. Anal. Appl. 109 (1985), 372 - 387. 647 · Zbl 0603.46040 [6] Graves, W. H. and W. Ruess: Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions. Contemporary Math. 2 (1980), 189 - 203. · Zbl 0576.46032 [7] Hausdorff, F.: Mengenlehre. Berlin: DeGruyter 1935. [8] Kalton, N.: Spaces of compact operators. Math. Ann. 208 (1974), 267 - 278. · Zbl 0266.47038 [9] Kalton, N.: The Orlicz-Pettis theorem. Contemporary Math. 2 (1980), 91 - 99. · Zbl 0566.46008 [10] Kuratowski, K. and A. Mostowski: Set Theory. Amsterdam: North-Holland 1976. [11] Li Ronglu and C. Swartz: K-convergence and the Orlicz-Pettis theorem. Publ. Inst. Math. (Beograd) 49(63) (1991), 117 - 122. · Zbl 0752.46002 [12] Li Ronglu and C. Swartz: A nonlinear Schur theorem. Acta Sci. Math. 58 (1993), 497 - 508. · Zbl 0804.40003 [13] Li Ronglu and Cho Minhyung: A Banach-Steinhaus type theorem which is valid for every locally convex space. Appl. Funct. Anal. 1 (1993), 146 - 147. [14] Li Ronglu and Bu Qingying: Locally convex spaces containing no copy of c0. J. Math. Anal. Appl. 172 (1993), 205 - 211. · Zbl 0779.46012 [15] Li Ronglu, Li Longsuo and Kang Shin Min: Summability results for operator matrices on topological vector spaces. Sci. China 44(A) (2001), 1300 - 1311. · Zbl 1013.46501 [16] Li Ronglu and Wang Junming: Invariants in abstract mapping pairs. J. Aust. Math. Soc. 76 (2004), 369 - 381. · Zbl 1082.46003 [17] Shapiro, J. H.: Weak topologies on subspaces of C(S). Trans. Amer. Math. Soc. 157 (1971), 471 - 479. · Zbl 0217.16501 [18] Stiles, W.: On subseries convergence in F -spaces. Israel J. Math. 8 (1970), 53 - 56. · Zbl 0193.08901 [19] Swartz, C.: A generalized Orlicz-Pettis theorem and applications. Math. Z. 163 (1978), 283 - 290. · Zbl 0378.22003 [20] Swartz, C.: Orlicz-Pettis theorems for operators, SEA Bull. Math., 12 (1988), 31 - 38. · Zbl 0711.47024 [21] Swartz, C. and C. Stuart: Orlicz-Pettis theorems for multiplier convergent series. J. Anal. Appl. 17 (1998), 805 - 811. · Zbl 0933.46005 [22] Thomas, G.: L’integration par rapport a une mesure de Radon vectorielle. Ann. Inst. Fourier 20 (1970), 55 - 191. · Zbl 0195.06101 [23] Tweddle, I.: Unconditional convergence and vector-valued measures. Proc. Lon- don Math. Soc. 2 (1970), 603 - 610. · Zbl 0199.20402 [24] Wilansky, A.: Modern Methods in Topological Vector Spaces. New York: McGraw-Hill 1978. · Zbl 0395.46001 [25] Wen Songlong, Cui Chengri and Li Ronglu.: s-Multiplier Convergence and Theorems of the Orlicz-Pettis type. Acta Mathematica Sinica 43 (2000), 273 - 282. Cui Chengri and Wen Songlong · Zbl 1013.46007 [26] Wu Junde, Cui Chengri and Cho Minhyung: The abstract uniform boundedness principle. Southeast Asian Bull. Math. 24 (2000), 655 - 660. · Zbl 1008.46001 [27] Wu Junde and Li Ronglu: An Orlicz-Pettis theorem with applications to A- spaces. Studia Sci. Math. Hungar. 35 (1999), 353 - 358. · Zbl 1012.46003 [28] Wu Junde and Lu Shijie: A full invariant theorem and some applications. J. Math. Anal. Appl. 270 (2002), 397 - 404. · Zbl 1039.46004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.