Chandra, Prem; Karanjgaokar, Varsha Trigonometric approximation of functions in \(L_1\)-norm. (English) Zbl 1513.41008 Period. Math. Hung. 84, No. 2, 177-185 (2022). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A25 40G05 42A10 PDF BibTeX XML Cite \textit{P. Chandra} and \textit{V. Karanjgaokar}, Period. Math. Hung. 84, No. 2, 177--185 (2022; Zbl 1513.41008) Full Text: DOI
Jena, B. B.; Mishra, Lakshmi Narayan; Paikray, S. K.; Misra, U. K. Approximation of signals by general matrix summability with effects of Gibbs phenomenon. (English) Zbl 1431.42002 Bol. Soc. Parana. Mat. (3) 38, No. 6, 141-158 (2020). MSC: 42A10 41A25 PDF BibTeX XML Cite \textit{B. B. Jena} et al., Bol. Soc. Parana. Mat. (3) 38, No. 6, 141--158 (2020; Zbl 1431.42002) Full Text: Link
Testici, Ahmet Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. (English) Zbl 1493.42003 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 2014-2025 (2019). Reviewer: Włodzimierz Łenski (Poznań) MSC: 42A10 41A25 41A30 PDF BibTeX XML Cite \textit{A. Testici}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 2014--2025 (2019; Zbl 1493.42003) Full Text: DOI
Mohapatra, Ram N.; Szal, Bogdan On trigonometric approximation of functions in the \(L^{q}\) norm. (English) Zbl 1388.42003 Demonstr. Math. 51, 17-26 (2018). MSC: 42A10 41A25 PDF BibTeX XML Cite \textit{R. N. Mohapatra} and \textit{B. Szal}, Demonstr. Math. 51, 17--26 (2018; Zbl 1388.42003) Full Text: DOI arXiv
Mittal, M. L.; Singh, Mradul Veer Applications of Cesàro submethod to trigonometric approximation of signals (functions) belonging to class \(\mathrm{lip}(\alpha, p)\) in \(L_p\)-norm. (English) Zbl 1487.42064 J. Math. 2016, Article ID 9048671, 7 p. (2016). MSC: 42C05 94A12 42A10 41A25 42A24 40G05 40C05 PDF BibTeX XML Cite \textit{M. L. Mittal} and \textit{M. V. Singh}, J. Math. 2016, Article ID 9048671, 7 p. (2016; Zbl 1487.42064) Full Text: DOI
Mittal, M. L.; Singh, Mradul Veer Approximation of functions of class \(\mathrm{Lip}(\alpha,p)\) in \(L_p\)-norm. (English) Zbl 1339.42005 Agrawal, P. N. (ed.) et al., Mathematical analysis and its applications. Proceedings of the international conference on recent trends in mathematical analyis and its applications, ICRTMAA 2014, Roorkee, India, December 21–23, 2014. New Delhi: Springer (ISBN 978-81-322-2484-6/hbk; 978-81-322-2485-3/ebook). Springer Proceedings in Mathematics & Statistics 143, 109-120 (2015). MSC: 42A10 42A24 40G05 41A25 PDF BibTeX XML Cite \textit{M. L. Mittal} and \textit{M. V. Singh}, Springer Proc. Math. Stat. 143, 109--120 (2015; Zbl 1339.42005) Full Text: DOI
Mittal, M. L.; Singh, Mradul Veer Approximation of signals (functions) by trigonometric polynomials in \(L_p\)-norm. (English) Zbl 1317.42003 Int. J. Math. Math. Sci. 2014, Article ID 267383, 6 p. (2014). MSC: 42A10 42A05 42A24 40C05 40G05 41A25 PDF BibTeX XML Cite \textit{M. L. Mittal} and \textit{M. V. Singh}, Int. J. Math. Math. Sci. 2014, Article ID 267383, 6 p. (2014; Zbl 1317.42003) Full Text: DOI
Mittal, M. L.; Rhoades, B. E.; Sonker, Smita; Singh, U. Approximation of signals of class \(Lip(\alpha , p)\) by linear operators. (English) Zbl 1213.42006 Appl. Math. Comput. 217, No. 9, 4483-4489 (2011). Reviewer: László Leindler (Szeged) MSC: 42A10 94A12 PDF BibTeX XML Cite \textit{M. L. Mittal} et al., Appl. Math. Comput. 217, No. 9, 4483--4489 (2011; Zbl 1213.42006) Full Text: DOI
Leindler, László Trigonometric approximation in \(L_{p}\)-norm. (English) Zbl 1057.42004 J. Math. Anal. Appl. 302, No. 1, 129-136 (2005). MSC: 42A10 PDF BibTeX XML Cite \textit{L. Leindler}, J. Math. Anal. Appl. 302, No. 1, 129--136 (2005; Zbl 1057.42004) Full Text: DOI
Chandra, Prem Trigonometric approximation of functions in \(L _{p}\)-norm. (English) Zbl 1011.42001 J. Math. Anal. Appl. 275, No. 1, 13-26 (2002). Reviewer: Laszlo Leindler (Szeged) MSC: 42A10 PDF BibTeX XML Cite \textit{P. Chandra}, J. Math. Anal. Appl. 275, No. 1, 13--26 (2002; Zbl 1011.42001) Full Text: DOI