×

Empirical mode decomposition combined with local linear quantile regression for automatic boundary correction. (English) Zbl 1474.62307

Summary: Empirical mode decomposition (EMD) is particularly useful in analyzing nonstationary and nonlinear time series. However, only partial data within boundaries are available because of the bounded support of the underlying time series. Consequently, the application of EMD to finite time series data results in large biases at the edges by increasing the bias and creating artificial wiggles. This study introduces a new two-stage method to automatically decrease the boundary effects present in EMD. At the first stage, local polynomial quantile regression (LLQ) is applied to provide an efficient description of the corrupted and noisy data. The remaining series is assumed to be hidden in the residuals. Hence, EMD is applied to the residuals at the second stage. The final estimate is the summation of the fitting estimates from LLQ and EMD. Simulation was conducted to assess the practical performance of the proposed method. Results show that the proposed method is superior to classical EMD.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
62G07 Density estimation
62M15 Inference from stochastic processes and spectral analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society A, 454, 1971, 903-995 (1998) · Zbl 0945.62093 · doi:10.1098/rspa.1998.0193
[2] Liu, Z., A novel boundary extension approach for empirical mode decomposition, Intelligent Computing. Intelligent Computing, Lecture Notes in Computer Science, 4113, 299-304 (2006), Berlin, Germany: Springer, Berlin, Germany
[3] Wang, W.; Li, X.; Zhang, R., Boundary processing of HHT using support vector regression machines, Computational Science—ICCS 2007. Computational Science—ICCS 2007, Lecture Notes in Computer Science, 4489, 174-177 (2007), Berlin, Germany: Springer, Berlin, Germany
[4] Zhao, J.; Huang, D., Mirror extending and circular spline function for empirical mode decomposition method, Journal of Zhejiang University Science, 2, 3, 247-252 (2001) · Zbl 1002.62069
[5] Zeng, K.; He, M.-X., A simple boundary process technique for empirical mode decomposition, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’04)
[6] Zhao, Z.; Wang, Y., A new method for processing end effect in empirical mode decomposition, Proceedings of the International Conference on Communications, Circuits and Systems (ICCCAS ’07)
[7] Wang, J.; Peng, Y.; Peng, X., Similarity searching based boundary effect processing method for empirical mode decomposition, Electronics Letters, 43, 1, 58-59 (2007) · doi:10.1049/el:20072762
[8] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 1, 33-50 (1978) · Zbl 0373.62038 · doi:10.2307/1913643
[9] Buchinsky, M., Quantile regression, Box-Cox transformation model, and the U.S. wage structure, 1963-1987, Journal of Econometrics, 65, 1, 109-154 (1995) · Zbl 0825.62956
[10] Wei, Y.; Pere, A.; Koenker, R.; He, X., Quantile regression methods for reference growth charts, Statistics in Medicine, 25, 8, 1369-1382 (2006) · doi:10.1002/sim.2271
[11] Chaudhuri, P., Nonparametric estimates of regression quantiles and their local Bahadur representation, The Annals of Statistics, 19, 2, 760-777 (1991) · Zbl 0728.62042 · doi:10.1214/aos/1176348119
[12] Yu, K.; Jones, M. C., Local linear quantile regression, Journal of the American Statistical Association, 93, 441, 228-237 (1998) · Zbl 0906.62038 · doi:10.2307/2669619
[13] Koenker, R., Quantile Regression (2005), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 1111.62037
[14] Müller, H.-G.; Wang, J.-L., Hazard rate estimation under random censoring with varying kernels and bandwidths, Biometrics, 50, 1, 61-76 (1994) · Zbl 0824.62097 · doi:10.2307/2533197
[15] Müller, H.-G., Smooth optimum kernel estimators near endpoints, Biometrika, 78, 3, 521-530 (1991) · Zbl 1192.62108 · doi:10.2307/2337021
[16] Oh, H.-S.; Naveau, P.; Lee, G., Polynomial boundary treatment for wavelet regression, Biometrika, 88, 1, 291-298 (2001) · Zbl 1028.62024 · doi:10.1093/biomet/88.1.291
[17] Oh, H.-S.; Lee, T. C. M., Hybrid local polynomial wavelet shrinkage: wavelet regression with automatic boundary adjustment, Computational Statistics & Data Analysis, 48, 4, 809-819 (2005) · Zbl 1429.62133 · doi:10.1016/j.csda.2004.04.002
[18] Wu, Q.; Riemenschneider, S. D., Boundary extension and stop criteria for empirical mode decomposition, Advances in Adaptive Data Analysis, 2, 2, 157-169 (2010) · doi:10.1142/S1793536910000434
[19] Deng, Y.; Wang, W.; Qian, C.; Wang, Z.; Dai, D., Boundary-processing-technique in EMD method and Hilbert transform, Chinese Science Bulletin, 46, 11, 954-961 (2001)
[20] Lin, D.-C.; Guo, Z.-L.; An, F.-P.; Zeng, F.-L., Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression, Mechanical Systems and Signal Processing, 31, 13-28 (2012) · doi:10.1016/j.ymssp.2012.02.012
[21] Blakely, C. D., A Fast Empirical Mode Decomposition Technique for Nonstationary Nonlinear Time Series, 3 (2005), New York, NY, USA: Elsevier Science, New York, NY, USA
[22] Amar, A.; El abidine Guennoun, Z., Contribution of wavelet transformation and empirical mode decomposition to measurement of US core inflation, Applied Mathematical Sciences, 6, 135, 6739-6752 (2012)
[23] Fan, Y.; Zhi, J. W.; Yuan, S. L., Improvement in time-series trend analysis, Computer Technology and Development, 16, 82-84 (2006)
[24] Koenker, R.; Ng, P.; Portnoy, S., Quantile smoothing splines, Biometrika, 81, 4, 673-680 (1994) · Zbl 0810.62040 · doi:10.1093/biomet/81.4.673
[25] Ruppert, D.; Sheather, S. J.; Wand, M. P., An effective bandwidth selector for local least squares regression, Journal of the American Statistical Association, 90, 1257-1270 (1995) · Zbl 0868.62034
[26] Xu, X., Semiparametric quantile dynamic time series models and their applications [Ph.D. thesis] (2005), Charlotte, NC, USA: University of North Carolina at Charlotte, Charlotte, NC, USA
[27] Cai, Z.; Xu, X., Nonparametric quantile estimations for dynamic smooth coefficient models, Journal of the American Statistical Association, 103, 484, 1595-1608 (2008) · Zbl 1286.62029 · doi:10.1198/016214508000000977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.