×

A note on the relation between the Fučík spectrum and Pareto eigenvalues. (English) Zbl 1322.47059

The authors study the notion of Pareto eigenvalue. In a finite-dimensional context, they point out a relationship between this notion and the Fučík spectrum of an operator.

MSC:

47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
34L05 General spectral theory of ordinary differential operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adly, S.; Rammal, H., A new method for solving Pareto eigenvalue complementarity problems, Comput. Optim. Appl., 55, 3, 703-731 (2013) · Zbl 1296.90124
[2] Ben-Naoum, A.; Fabry, C.; Smets, D., Structure of the Fučík spectrum and existence of solutions for equations with asymmetric nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A Math., 131, 2, 241-265 (2001) · Zbl 0987.35118
[3] Campos, J.; Dancer, E. N., On the resonance set in a fourth-order equation with jumping nonlinearity, Differential Integral Equations, 14, 3, 257-272 (2001) · Zbl 1022.35011
[4] Cottle, R. W.; Pang, J.-S.; Stone, R. E., The Linear Complementarity Problem, Computer Science and Scientific Computing (1992), Academic Press, Inc.: Academic Press, Inc. Boston, MA · Zbl 0757.90078
[5] Dancer, E., On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A Math., 76, 283-300 (1977) · Zbl 0351.35037
[6] Drábek, P.; Holubová, G.; Matas, A.; Nečesal, P., Nonlinear models of suspension bridges: discussion of the results, Mathematical and Computer Modeling in Science and Engineering. Mathematical and Computer Modeling in Science and Engineering, Appl. Math., 48, 6, 497-514 (2003) · Zbl 1099.74030
[7] Drábek, P.; Nečesal, P., Nonlinear scalar model of a suspension bridge: existence of multiple periodic solutions, Nonlinearity, 16, 3, 1165-1183 (2003) · Zbl 1035.35008
[8] Espinoza, P. C., Discrete analogue of Fučik spectrum of the Laplacian, Applied and Computational Topics in Partial Differential Equations. Applied and Computational Topics in Partial Differential Equations, Gramado, 1997. Applied and Computational Topics in Partial Differential Equations. Applied and Computational Topics in Partial Differential Equations, Gramado, 1997, J. Comput. Appl. Math., 103, 1, 93-97 (1999) · Zbl 0944.15007
[9] Fučík, S., Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101, 1, 69-87 (1976) · Zbl 0332.34016
[10] Fučík, S., Solvability of Nonlinear Equations and Boundary Value Problems, Math. Appl., vol. 4 (1980), D. Reidel Publishing Co.: D. Reidel Publishing Co. Dordrecht · Zbl 0453.47035
[11] Holubová, G.; Nečesal, P., Nontrivial Fučík spectrum of one non-selfadjoint operator, Nonlinear Anal., 69, 9, 2930-2941 (2008) · Zbl 1161.34009
[12] Holubová, G.; Nečesal, P., The Fučík spectra for multi-point boundary-value problems, (Proceedings of the 2007 Conference on Variational and Topological Methods. Proceedings of the 2007 Conference on Variational and Topological Methods, Electron. J. Differ. Equ. Conf., vol. 18 (2010), Southwest Texas State Univ.), 33-44 · Zbl 1203.34142
[13] Holubová, G.; Nečesal, P., Fučík spectrum in general: principal eigenvalues and inadmissible sets, Topol. Methods Nonlinear Anal., 44, 1, 11-21 (2014) · Zbl 1515.47005
[14] Horák, J.; Reichel, W., Analytical and numerical results for the Fučík spectrum of the Laplacian, J. Comput. Appl. Math., 161, 2, 313-338 (2003) · Zbl 1049.65127
[15] Hyers, D. H.; Isac, G.; Rassias, T. M., Topics in Nonlinear Analysis & Applications (1997), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0878.47040
[16] Krejčí, P., On solvability of equations of the 4th order with jumping nonlinearities, Časopis Pěst. Mat., 108, 1, 29-39 (1983) · Zbl 0515.35013
[17] Lazer, A.; McKenna, P., Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32, 4, 537-578 (1990) · Zbl 0725.73057
[18] Ma, R.; Xu, Y.; Gao, C., Spectrum of linear difference operators and the solvability of nonlinear discrete problems, Discrete Dyn. Nat. Soc. (2010), Art. ID 757416, 27 pp · Zbl 1213.39020
[19] Margulies, C.; Margulies, W., Nonlinear resonance set for nonlinear matrix equations, Linear Algebra Appl., 293, 1-3, 187-197 (1999) · Zbl 0944.15014
[20] McKenna, P. J., Large-amplitude periodic oscillations in simple and complex mechanical system: outgrowths from nonlinear analysis, Milan J. Math., 74, 79-115 (2006) · Zbl 1117.35025
[21] Moreau, J.-J., Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255, 238-240 (1962) · Zbl 0109.08105
[22] Ortega, R., On Littlewood’s problem for the asymmetric oscillator, Rend. Semin. Mat. Fis. Milano, 68, 153-164 (1998) · Zbl 1020.34032
[23] Pinto da Costa, A.; Seeger, A., Numerical resolution of cone-constrained eigenvalue problems, Comput. Appl. Math., 28, 37-61 (2009) · Zbl 1171.65027
[24] Pinto da Costa, A.; Seeger, A., Cone-constrained eigenvalue problems: theory and algorithms, Comput. Optim. Appl., 45, 1, 25-57 (2010) · Zbl 1193.65039
[25] Seeger, A., Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra Appl., 292, 1-3, 1-14 (1999) · Zbl 1016.90067
[26] Stehlík, P., Discrete Fučík spectrum—anchoring rather than pasting, Bound. Value Probl., 2013 (2013), 67, 11 pp · Zbl 1306.39005
[27] Švarc, R., Two examples of the operators with jumping nonlinearities, Comment. Math. Univ. Carolin., 30, 3, 587-620 (1989) · Zbl 0732.47052
[28] Vicente-Perez, J.; Seeger, A., On cardinality of Pareto spectra, Electron. J. Linear Algebra, 22, 758-766 (2011) · Zbl 1254.15015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.