Bruggeman, Roelof; Pohl, Anke Dorothea Eigenfunctions of transfer operators and automorphic forms for Hecke triangle groups of infinite covolume. (English) Zbl 07704547 Memoirs of the American Mathematical Society 1423. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6545-2/pbk; 978-1-4704-7539-0/ebook). vii, 172 p. (2023). MSC: 11-02 11F12 11F67 37C30 11F72 30F35 37D40 PDF BibTeX XML Cite \textit{R. Bruggeman} and \textit{A. D. Pohl}, Eigenfunctions of transfer operators and automorphic forms for Hecke triangle groups of infinite covolume. Providence, RI: American Mathematical Society (AMS) (2023; Zbl 07704547) Full Text: DOI arXiv
Magee, Michael; Naud, Frédéric Explicit spectral gaps for random covers of Riemann surfaces. (English) Zbl 1508.58008 Publ. Math., Inst. Hautes Étud. Sci. 132, 137-179 (2020). MSC: 58J50 60B20 58J65 PDF BibTeX XML Cite \textit{M. Magee} and \textit{F. Naud}, Publ. Math., Inst. Hautes Étud. Sci. 132, 137--179 (2020; Zbl 1508.58008) Full Text: DOI arXiv
Fedosova, Ksenia; Pohl, Anke Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy. (English) Zbl 1453.11118 Sel. Math., New Ser. 26, No. 1, Paper No. 9, 55 p. (2020). Reviewer: Anton Deitmar (Tübingen) MSC: 11M36 37C30 37D35 PDF BibTeX XML Cite \textit{K. Fedosova} and \textit{A. Pohl}, Sel. Math., New Ser. 26, No. 1, Paper No. 9, 55 p. (2020; Zbl 1453.11118) Full Text: DOI arXiv
Hora, Raphael; Sá Barreto, Antônio Inverse scattering with disjoint source and observation sets on asymptotically hyperbolic manifolds. (English) Zbl 1411.35217 Commun. Partial Differ. Equations 43, No. 9, 1363-1376 (2018). Reviewer: David Kapanadze (Tbilisi) MSC: 35P25 58J50 35L15 35R01 35R30 PDF BibTeX XML Cite \textit{R. Hora} and \textit{A. Sá Barreto}, Commun. Partial Differ. Equations 43, No. 9, 1363--1376 (2018; Zbl 1411.35217) Full Text: DOI
Weich, Tobias Resonance chains and geometric limits on Schottky surfaces. (English) Zbl 1321.30029 Commun. Math. Phys. 337, No. 2, 727-765 (2015). Reviewer: Peter B. Gilkey (Eugene) MSC: 30F99 35P25 58J50 PDF BibTeX XML Cite \textit{T. Weich}, Commun. Math. Phys. 337, No. 2, 727--765 (2015; Zbl 1321.30029) Full Text: DOI arXiv
Pohl, Anke D. A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area. (English) Zbl 1348.37042 Commun. Math. Phys. 337, No. 1, 103-126 (2015). MSC: 37C30 37B10 11M36 53D25 PDF BibTeX XML Cite \textit{A. D. Pohl}, Commun. Math. Phys. 337, No. 1, 103--126 (2015; Zbl 1348.37042) Full Text: DOI arXiv
Guillarmou, Colin; Mazzeo, Rafe Resolvent of the Laplacian on geometrically finite hyperbolic manifolds. (English) Zbl 1252.58015 Invent. Math. 187, No. 1, 99-144 (2012). Reviewer: Wolfram Bauer (Göttingen) MSC: 58J50 35P25 PDF BibTeX XML Cite \textit{C. Guillarmou} and \textit{R. Mazzeo}, Invent. Math. 187, No. 1, 99--144 (2012; Zbl 1252.58015) Full Text: DOI arXiv
Guillarmou, Colin; Moroianu, Sergiu; Park, Jinsung Eta invariant and Selberg zeta function of odd type over convex co-compact hyperbolic manifolds. (English) Zbl 1209.58017 Adv. Math. 225, No. 5, 2464-2516 (2010). Reviewer: Wadim Zudilin (Bonn) MSC: 58J28 58J50 11M36 11F72 PDF BibTeX XML Cite \textit{C. Guillarmou} et al., Adv. Math. 225, No. 5, 2464--2516 (2010; Zbl 1209.58017) Full Text: DOI arXiv
Guillarmou, Colin; Naud, Frédéric Wave decay on convex co-compact hyperbolic manifolds. (English) Zbl 1196.58011 Commun. Math. Phys. 287, No. 2, 489-511 (2009). MSC: 58J37 58J45 58J50 11M36 35L05 35P05 PDF BibTeX XML Cite \textit{C. Guillarmou} and \textit{F. Naud}, Commun. Math. Phys. 287, No. 2, 489--511 (2009; Zbl 1196.58011) Full Text: DOI arXiv
Schulze, Michael On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry. (English) Zbl 1094.58012 J. Funct. Anal. 236, No. 1, 120-160 (2006). Reviewer: Georgi E. Karadzhov (Sofia) MSC: 58J50 58J60 11M36 11F72 PDF BibTeX XML Cite \textit{M. Schulze}, J. Funct. Anal. 236, No. 1, 120--160 (2006; Zbl 1094.58012) Full Text: DOI
Sá Barreto, Antônio Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds. (English) Zbl 1154.58310 Duke Math. J. 129, No. 3, 407-480 (2005). MSC: 58J50 35P25 35R30 47A40 81U40 PDF BibTeX XML Cite \textit{A. Sá Barreto}, Duke Math. J. 129, No. 3, 407--480 (2005; Zbl 1154.58310) Full Text: DOI arXiv Euclid
Guillarmou, Colin Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. (English) Zbl 1099.58011 Duke Math. J. 129, No. 1, 1-37 (2005). Reviewer: Mahameden Ould Ahmedou (Tübingen) MSC: 58J50 35P25 PDF BibTeX XML Cite \textit{C. Guillarmou}, Duke Math. J. 129, No. 1, 1--37 (2005; Zbl 1099.58011) Full Text: DOI arXiv
Borthwick, David; Judge, Chris; Perry, Peter A. Determinants of Laplacians and isopolar metrics on surfaces of infinite area. (English) Zbl 1040.58013 Duke Math. J. 118, No. 1, 61-102 (2003). Reviewer: Peter B. Gilkey (Eugene) MSC: 58J52 58J50 35P25 47A40 PDF BibTeX XML Cite \textit{D. Borthwick} et al., Duke Math. J. 118, No. 1, 61--102 (2003; Zbl 1040.58013) Full Text: DOI arXiv
Patterson, S. J.; Perry, Peter A. [Epstein, Charles] The divisor of Selberg’s zeta function for Kleinian groups. Appendix A by Charles Epstein. (English) Zbl 1012.11083 Duke Math. J. 106, No. 2, 321-390 (2001). Reviewer: Peter B.Gilkey (Eugene) MSC: 11M36 58J50 22E40 37C30 37D35 11F72 PDF BibTeX XML Cite \textit{S. J. Patterson} and \textit{P. A. Perry}, Duke Math. J. 106, No. 2, 321--390 (2001; Zbl 1012.11083) Full Text: DOI
Babillot, Martine; Peigné, Marc Homology of closed geodesics on hyperbolic manifolds with cusps. (Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux.) (French) Zbl 0984.37033 Ann. Sci. Éc. Norm. Supér. (4) 33, No. 1, 81-120 (2000). Reviewer: P.Eberlein (Chapel Hill) MSC: 37D40 53C22 PDF BibTeX XML Cite \textit{M. Babillot} and \textit{M. Peigné}, Ann. Sci. Éc. Norm. Supér. (4) 33, No. 1, 81--120 (2000; Zbl 0984.37033) Full Text: DOI Numdam EuDML
Dal’Bo, Françoise; Peigné, Marc Ping-pong groups and closed geodesics in constant negative curvature. (Groupes du ping-pong et géodésiques fermées en courbure \(-1\).) (French) Zbl 0853.53032 Ann. Inst. Fourier 46, No. 3, 755-799 (1996). MSC: 53C22 PDF BibTeX XML Cite \textit{F. Dal'Bo} and \textit{M. Peigné}, Ann. Inst. Fourier 46, No. 3, 755--799 (1996; Zbl 0853.53032) Full Text: DOI Numdam EuDML