Šepitka, Peter; Šimon Hilscher, Roman Singular Sturmian comparison theorems for linear Hamiltonian systems. (English) Zbl 1442.37114 J. Differ. Equations 269, No. 4, 2920-2955 (2020). MSC: 37N35 37J46 93C05 × Cite Format Result Cite Review PDF Full Text: DOI
Özbekler, Abdullah Forced oscillation of delay difference equations via nonprincipal solution. (English) Zbl 1391.39020 Math. Methods Appl. Sci. 41, No. 9, 3509-3520 (2018). MSC: 39A21 39A10 × Cite Format Result Cite Review PDF Full Text: DOI
Mostepha, Naceri; Özbekler, Abdullah Forced oscillation of sublinear impulsive differential equations via nonprincipal solution. (English) Zbl 1456.34029 Math. Methods Appl. Sci. 41, No. 9, 3335-3344 (2018). MSC: 34C10 34A37 37C60 × Cite Format Result Cite Review PDF Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Focal points and principal solutions of linear Hamiltonian systems revisited. (English) Zbl 1394.34061 J. Differ. Equations 264, No. 9, 5541-5576 (2018). Reviewer: Qiru Wang (Guangzhou) MSC: 34C10 37J99 × Cite Format Result Cite Review PDF Full Text: DOI
Özbekler, Abdullah; Zafer, A. Wong’s oscillation theorem for the second-order delay differential equations. (English. Ukrainian original) Zbl 1366.34094 J. Math. Sci., New York 222, No. 3, 304-311 (2017); translation from Neliniĭni Kolyvannya 19, No. 1, 93-100 (2016). MSC: 34K11 × Cite Format Result Cite Review PDF Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Reid’s construction of minimal principal solution at infinity for linear Hamiltonian systems. (English) Zbl 1375.37058 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. ICDDEA, Amadora, Portugal, May 18–22, 2015. Selected contributions. Cham: Springer (ISBN 978-3-319-32855-3/hbk; 978-3-319-32857-7/ebook). Springer Proceedings in Mathematics & Statistics 164, 359-369 (2016). MSC: 37C10 34C10 37J99 37N35 × Cite Format Result Cite Review PDF Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity. (English) Zbl 1338.34036 J. Differ. Equations 260, No. 8, 6581-6603 (2016). Reviewer: Qingkai Kong (DeKalb) MSC: 34A30 34C10 37J99 × Cite Format Result Cite Review PDF Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Principal and antiprincipal solutions at infinity of linear Hamiltonian systems. (English) Zbl 1329.34024 J. Differ. Equations 259, No. 9, 4651-4682 (2015). MSC: 34A30 37J99 × Cite Format Result Cite Review PDF Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems. (English) Zbl 1348.37091 J. Dyn. Differ. Equations 27, No. 1, 137-175 (2015). MSC: 37J05 34C10 34A30 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems. (English) Zbl 1305.34053 J. Dyn. Differ. Equations 26, No. 1, 57-91 (2014). Reviewer: Pavel Rehak (Brno) MSC: 34C10 34A30 37J99 × Cite Format Result Cite Review PDF Full Text: DOI
Özbekler, A.; Wong, J. S. W.; Zafer, A. Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients. (English) Zbl 1223.34046 Appl. Math. Lett. 24, No. 7, 1225-1230 (2011). Reviewer: Jozef Dzurina (Košice) MSC: 34C10 × Cite Format Result Cite Review PDF Full Text: DOI
Özbekler, A.; Zafer, A. Principal and nonprincipal solutions of impulsive differential equations with applications. (English) Zbl 1201.34017 Appl. Math. Comput. 216, No. 4, 1158-1168 (2010). Reviewer: Stepan Kostadinov (Plovdiv) MSC: 34A37 × Cite Format Result Cite Review PDF Full Text: DOI
Došlý, Ondřej Methods of oscillation theory of half-linear second order differential equations. (English) Zbl 1079.34512 Czech. Math. J. 50, No. 3, 657-671 (2000). MSC: 34C10 × Cite Format Result Cite Review PDF Full Text: DOI EuDML