×

zbMATH — the first resource for mathematics

Classical dynamics of non-holonomic systems: A geometric approach. (English) Zbl 0731.70012
Summary: A frame independent formulation of classical analytical dynamics in the language of jet-bundle theory is developed. The geometrical environment is general enough to accommodate arbitrary “ideal” non-holonomic systems, independently of any assumption of linearity, through a suitable implementation of Gauss’ principle of minimal constraint. The resulting dynamical scheme is analyzed in detail. Comparison with other, more traditional formulations, is examined.

MSC:
70F25 Nonholonomic systems related to the dynamics of a system of particles
70H30 Other variational principles in mechanics
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] J.L. Lagrange , Mécanique Analytique, in Œuvres de Lagrange , Paris , 1788 . Article · minidml.mathdoc.fr
[2] T. Levi-Civita and U. Amaldi , Lezioni di Meccanica Razionale , Zanichelli, Bologna , 1984 , first edition 1922 , second edition 1929 . · JFM 49.0565.11
[3] N.G. Chetaev , O printsipe Gaussa (On the Gauss Principle) , Izd. Fiz.-Matem. Obshch. pri Kazansk. Univ. , Ser. 3 , Vol. 6 , 1932 - 1933 , pp. 323 - 326 , Izvestia of the Physico-Mathematical Society of Kazan University , Series 3 , Vol. 6 , 1932 - 1933 , pp. 62 - 67 .
[4] N.G. Chetaev , Papers on Analytical Mechanics. On the Gauss Principle , Moscow , Izd. Akad. Nauk S.S.S.R. , 1962 .
[5] V.V. Rumiantsev , Certain Variational Principles of Mechanics , in Adv. Theor. Appl. Mech. , A. ISHLINSKY and F. CHERNOUSKO Eds., English translation, MIR Publishers , Moscow , 1981 . Zbl 0547.70022 · Zbl 0547.70022
[6] Y. Pironneau , Sur les liaisons non holonomes, non linéaires, déplacements virtuels à travail nul, conditions de Chetaev , Proceedings of the I.U.T.A.M.-I.S.I.M.M. Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin , June 7-11, 1982 , Atti della Accademia delle Scienze di Torino, Supplemento al Vol. 117 , 1983 , pp. 671 - 686 . MR 773517
[7] K. Gauss , Uber ein neues allgemeines Grundgesetz der Mechanik , Crelle J. reine Math. , Vol. 4 , 1829 , pp. 232 . · ERAM 004.0157cj
[8] G. Hamel , Theoretische Mechanik, Eine einheitliche Einfuhrung in die gesamte Mechanik , Springer-Verlag , Berlin , 1949 . MR 34137 | Zbl 0036.24301 · Zbl 0036.24301
[9] E.T. Whittaker , A Treatise on the Analytical Dynamics of Particles and Rigid Bodies , 4 th ed., Cambridge University Press , Cambridge , 1959 . MR 103613 | Zbl 0049.40801 · Zbl 0049.40801
[10] J.F. Pommaret , Systems of Partial Differential Equations and Lie Pseudogroups , Gordon and Breach , New York , 1978 . MR 517402 | Zbl 0418.35028 · Zbl 0418.35028
[11] P. Libermann and C.M. Marle , Differential Geometry and Analytical Mechanics , D. Reidel Publ. Comp , Dordrecht , Holland, 1987 . MR 882548 · Zbl 0643.53002
[12] M. Ferrers , Extension of Lagrange’s Equations , Quart. J. Math. , Vol. 12 , 1873 , pp. 1 - 4 . JFM 04.0457.01 · JFM 04.0457.01
[13] C. Neumann , Uber die rollende Bewegung eines Korpers auf einer gegebenen Horizontaleben unter dem Einfluss der Schwere , Ber. Verh. Konigl. Sachs. Ges. Wiss. , Leipzig Math. Phys. Cl. 37 , 1885 , pp. 352 - 378 . JFM 17.0893.02 · JFM 17.0893.02
[14] G.A. Maggi , Di alcune nuove forme delle equazioni della dinamica applicabili ai sistemi anolonomi , Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat. Nat. , Vol. 10 , 1901 , pp. 287 - 291 . JFM 32.0714.02 · JFM 32.0714.02
[15] P. Appel , Sur les liaisons exprimées par des relations non linéaires entre les vitesses , C.R. Acad. Sci. Paris , T. 152 , 1911 , pp. 1197 - 1199 . JFM 42.0755.02 · JFM 42.0755.02
[16] P. Appel , Exemple de mouvement d’un point assujetti à une liaison exprimée par une relation non linéaire entre les composantes de la vitesse , Rend. Circ. Mat. Palermo , Vol. 32 , 1911 , pp. 48 - 50 . JFM 42.0756.01 · JFM 42.0756.01
[17] P. Appel , Traité de Mécanique Rationnelle , Gauthier-Villars , Paris , 1903 . JFM 40.0751.01 · JFM 40.0751.01
[18] P.V. Voronets , On Equations of Motion for Nonholonomic Systems , Math. Sb. , Vol. 22 , 1901 , pp. 659 - 686 (in russian).
[19] P.E. Jourdain , Note on an Analogue of the Gauss Principle of Least Constraint , The Quarterly J. Pure Appl. Math. , 40 , 1909 , pp. 153 - 157 . JFM 40.0780.01 · JFM 40.0780.01
[20] V. Volterra , Sopra una classe di equazioni dinamiche , Atti Acad. Sci. cl. Fis. Mat. Nat. , Torino , Vol. 33 , 1887 . JFM 29.0604.03 · JFM 29.0604.03
[21] S.A. Chaplygin , On the Theory of Motion of Nonholonomic Systems. Theorems on the Reducing Multiplier , Math. Sb. , Vol. 28 , 1911 , pp. 303 - 314 , (in russian).
[22] L.A. Pars , A Treatise on Analytical Dynamics , Heinemaun , London , 1965 . Zbl 0125.12004 · Zbl 0125.12004
[23] F.R. Gantmacher , Lezioni di Meccanica Analitica , Editori Riuniti , Roma , 1980 .
[24] Iu.I. Neimark and N.A. Fufaev Dynamics of Nonholonomic Systems , Translations of Mathematical Monographs , Vol. 33 , American Mathematical Society , Providence , Rhode Island , 1972 . Zbl 0245.70011 · Zbl 0245.70011
[25] I.L. Khmelevskii , On a Problem of Chaplygin , P.M.M. , Vol. 26 , 1962 , pp. 289 - 304 . MR 142223 | Zbl 0114.15001 · Zbl 0114.15001
[26] I. Iliev , On the Conditions for the Existence of the Reducing Chaplygin Factor , P.M.M. , Vol. 49 , 1985 , pp. 295 - 301 . MR 855811 | Zbl 0596.70011 · Zbl 0596.70011 · doi:10.1016/0021-8928(85)90026-7
[27] V.S. Novoselov , Applications of Nonlinear Nonholonomic Coordinates in Analytical Mechanics , Leningrad, Gos. Univ., Ucenye Zap. 217, Ser. Mat. Nauk , Vol. 31 , 1957 , pp. 50 - 83 (in russian). Zbl 0085.17703 · Zbl 0085.17703
[28] V.S. Novoselov , Extended Equations of Motion of Nonlinear Nonholonomic Systems , Leningrad , Gos. Univ. , Ucenye Zap. 217 , Ser. Mat. Nauk , Vol. 31 , 1957 , pp. 84 - 89 (in russian). MR 90976 | Zbl 0085.17704 · Zbl 0085.17704
[29] V.S. Novoselov , Application of Helmholtz’s Method to the Study of the Motion of the Chaplygin Systems , Vestn. L.G.U., Ser. Mat. Mekh. Astron. , Vol. 13 , 1958 , pp. 102 - 111 . MR 99128 | Zbl 0095.17703 · Zbl 0095.17703
[30] V.S. Novoselov , Application of Helmholtz’s Method to the Investigation of the Motion of Nonholonomic Systems , Vestn. L.G.U., Ser. Mat. Mekh. Astron. , Vol. 13 , 1958 , pp. 80 - 87 . MR 99129 | Zbl 0080.17303 · Zbl 0080.17303
[31] V.S. Novoselov , Variational Methods in Mechanics , Leningrad , Izd. Leningrad. Gos. Univ. , 1966 . MR 210354 | Zbl 0141.41703 · Zbl 0141.41703
[32] A.S. Sumbatov , Reduction of the Differential Equations of Nonholonomic Mechanics to Lagrange Form , P.M.M. Vol. 36 , 1972 , pp. 194 - 201 .
[33] A.S. Sumbatov , On the Linear Integrals of the Chaplygin Equations , P.M.M. , Vol. 45 , 1981 , pp. 339 - 342 . Zbl 0499.70022 · Zbl 0499.70022 · doi:10.1016/0021-8928(81)90063-0
[34] N.K. Moshchuk , Reducing the Equations of Motion of Certain Non-Holonomic Chaplygin Systems to Lagrangian and Hamiltonian Form , P.M.M. , Vol. 51 , 1987 , pp. 172 - 177 . MR 946561 | Zbl 0653.70015 · Zbl 0653.70015 · doi:10.1016/0021-8928(87)90060-8
[35] N.K. Moshchuk , On the Motion of the Chaplygin’s Sledge , P.M.M. , Vol. 51 , 1987 , pp. 426 - 430 . MR 971656 | Zbl 0664.70019 · Zbl 0664.70019 · doi:10.1016/0021-8928(87)90079-7
[36] V.V. Rumiantsev , On Hamilton’s Principle for Nonholonomic Systems , P.M.M. , Vol. 42 , 1978 , pp. 407 - 419 . Zbl 0419.70015 · Zbl 0419.70015 · doi:10.1016/0021-8928(78)90108-9
[37] V.V. Rumiantsev , On the Lagrange and Jacobi Principles for Nonholonomic Systems , P.M.M. , Vol. 43 , 1979 , pp. 625 - 632 . MR 620568 | Zbl 0443.70012 · Zbl 0443.70012 · doi:10.1016/0021-8928(79)90148-5
[38] V.V. Rumiantsev , On Integral Principles for Nonholonomic Systems , P.M.M. , Vol. 46 , 1982 , pp. 1 - 8 . MR 685650 | Zbl 0514.70016 · Zbl 0514.70016 · doi:10.1016/0021-8928(82)90074-0
[39] V.V. Rumiantsev , On Some Problems of Analytical Dynamics of Nonholonomic Systems , Proceedings of the I.U.T.A.M.-I.S.I.M.M. Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti dell’Accademia delle Scienze di Torino , Supplemento al Vol. 117 , 1983 , pp. 697 - 716 . MR 773520
[40] I.L. Khmelevskii , On Hamilton’s Principle for Nonholonomic Systems , P.M.M. , Vol. 24 , 1960 , pp. 1177 - 1182 . Zbl 0102.39501 · Zbl 0102.39501 · doi:10.1016/0021-8928(60)90098-8
[41] E. Kh. Naziev , On the Hamilton-Jacobi Method for Nonholonomic Systems , P.M.M. , Vol. 36 , 1972 , pp. 1038 - 1045 . MR 334625
[42] A. Pignedoli , On some Investigations of the Italian School about Holonomic and Non-Holonomic Systems , Proceedings of the I.U.T.A.M.-I.S.I.M.M. Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti della Accademia delle Scienze di Torino , Supplemento al Vol. 117 , 1983 , pp. 645 - 670 . MR 773516
[43] C. Cattaneo , Sulla struttura locale delle equazioni dinamiche di un sistema anolonomo , Rend. Sci. Fis. Mat. Nat. Accad. Lincei , Vol. 34 , 1963 , pp. 396 - 402 . MR 160344 | Zbl 0168.21902 · Zbl 0168.21902
[44] E. Clauser , Geometrizzazione della dinamica dei sistemi a vincoli mobili , Rend. Sc. Fis. Mat. Nat. Accad. Lincei , Vol. 19 , 1955 , pp. 33 - 39 . MR 78795 · Zbl 0067.16804
[45] G. Ferrarese , Sulle equazioni di moto di un sistema soggetto ad un vicolo anolonomo mobile , Rendiconti di Matematica Univ. Roma , Vol. 22 , 1963 , pp. 351 - 370 . MR 168156 | Zbl 0126.19503 · Zbl 0126.19503
[46] E. Delassus , Sur les liaisons non linéaires , C.R. Acad. Sci. Paris , T. 153 , 1911 , p. 626 - 628 . JFM 42.0757.01 · JFM 42.0757.01
[47] E. Delassus , Sur les liaisons non linéaires et les mouvements étudiés par M. Appell , C.R. Acad. Sci. Paris , T. 153 , 1911 , pp. 707 - 710 . JFM 42.0757.02 · JFM 42.0757.02
[48] E. Delassus , Leçons sur la dynamique des systèmes matériels , Hermann , Paris , 1913 . JFM 44.0764.01 · JFM 44.0764.01
[49] V. Valcovici , Une extension des liaisons non holonomes , C.R. Acad. Sci. Paris , T. 243 , 1956 , pp. 1012 - 1014 . MR 81623 | Zbl 0071.18003 · Zbl 0071.18003
[50] V. Valcovici , Une extension des liaisons non holonomes , C.R. Acad. Sci. Paris , T. 243 , 1956 , pp. 1096 - 1098 . MR 81055 | Zbl 0071.18003 · Zbl 0071.18003
[51] V. Valcovici , Une extension des liaisons non holonomes et des principes variationnels , Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Nat. Kl. , Vol. 102 , 1958 , pp. 1 - 39 . MR 90218 | Zbl 0078.37505 · Zbl 0078.37505
[52] Q.K. Ghori , Equations of Motion of a System with Nonlinear Nonholonomic Constraint , Arch. Rat. Mech. Anal. , Vol. 11 , 1962 , pp. 114 - 116 . MR 150999 | Zbl 0131.39103 · Zbl 0131.39103 · doi:10.1007/BF00253933
[53] Duo San , Equations of Motion of Systems with Second-order Nonlinear Nonholonomic Constraints , P.M.M. , Vol. 37 , 1973 , pp. 329 - 334 . Zbl 0293.70014 · Zbl 0293.70014 · doi:10.1016/0021-8928(73)90044-0
[54] V.I. Kirgetov , On ”Possible Displacements” of Material Systems , P.M.M. , Vol. 23 , 1959 , pp. 956 - 962 . MR 113302 | Zbl 0091.17002 · Zbl 0091.17002 · doi:10.1016/0021-8928(59)90031-0
[55] V.I. Kirgetov , On the Relaxation of Material System , P.M.M. , Vol. 24 , 1960 , pp. 48 - 58 . MR 119482 | Zbl 0096.38301 · Zbl 0096.38301 · doi:10.1016/0021-8928(60)90140-4
[56] B.G. Kuznetsov , Generalized Virtual Displacements , P.M.M. , Vol. 23 , 1959 , pp. 963 - 974 . MR 113303 | Zbl 0091.16501 · Zbl 0091.16501 · doi:10.1016/0021-8928(59)90032-2
[57] G.H. Pozharitskii , On the Equations of Motion for Systems with Nonideal Constraints , P.M.M. , Vol. 24 , 1960 , pp. 669 - 675 . MR 127575 | Zbl 0102.39703 · Zbl 0102.39703 · doi:10.1016/0021-8928(60)90173-8
[58] L.N. Semenova , On Routh Theorem for Nonholonomic Systems , P.M.M. , Vol. 29 , 1965 , pp. 167 - 169 . MR 201108 | Zbl 0142.23101 · Zbl 0142.23101 · doi:10.1016/0021-8928(65)90160-7
[59] L. Salvadori , Sulla stabilita dei moti merostatici di particolari sistemi anolonomi , Rend. Accad. Sci. Fis. Mat. Napoli , Vol. ( IV ), 20 , 1953 , pp. 66 - 78 . MR 72582 | Zbl 0058.17802 · Zbl 0058.17802
[60] L. Salvadori , Influenza di una sollecitazione dissipativa sulla stabilita’ dei moti merostatici di una classe di sistemi anolonomi , Rend. Accad. Sci. Fis. Mat. Napoli , Vol. ( IV ), 33 , 1966 , pp. 191 - 198 . Zbl 0237.70025 · Zbl 0237.70025
[61] V.V. Rumiantsev , On Stability of Motion of Nonholonomic System , P.M.M. , Vol. 31 , 1967 , pp. 282 - 293 . Zbl 0159.26101 · Zbl 0159.26101 · doi:10.1016/0021-8928(67)90153-0
[62] A.V. Karapetyan , On the Stability of Steady Motions of Chaplygin’s Nonholonomic Systems , P.M.M. , Vol. 42 , 1978 , pp. 863 - 870 . Zbl 0438.70018 · Zbl 0438.70018 · doi:10.1016/0021-8928(78)90033-3
[63] A.V. Karapetyan , On the Problem of Steady Motion Stability of Nonholonomic Systems , P.M.M. , Vol. 44 , 1980 , pp. 295 - 300 . Zbl 0464.70009 · Zbl 0464.70009 · doi:10.1016/0021-8928(80)90111-2
[64] A.V. Karapetyan , On the Realization of Non-holonomic Constraints and the Stability of Celtic Stones , P.M.M. , Vol. 45 , 1981 , pp. 30 - 36 . · Zbl 0493.70008
[65] A.V. Karapetyan , On the Stability of the Stationary Motions of Systems with Friction , P.M.M. , Vol. 51 , 1987 , pp. 431 - 436 . MR 971657 | Zbl 0664.70017 · Zbl 0664.70017 · doi:10.1016/0021-8928(87)90080-3
[66] G. Fusco and M. Oliva , Dissipative Systems with Constraints , J. Diff. Eq. , Vol. 63 , 1986 , pp. 362 - 388 . MR 848274 | Zbl 0594.58037 · Zbl 0594.58037 · doi:10.1016/0022-0396(86)90061-6
[67] N.N. Polyakhov , S.A. Zegzhda and M.P. Yushkov , Generalization of Gauss’s Principle to Nonholonomic Systems of Higher Orders , Sov. Phys. Dokl. , Vol. 28 , 1983 , pp. 330 - 332 . Zbl 0536.70021 · Zbl 0536.70021
[68] A.M. Vershik and L.D. Faddeev , Differential Geometry and Lagrangian Mechanics with Constraints , Sov. Phys. Dokl. , Vol. 17 , 1972 , pp. 34 - 36 . Zbl 0243.70014 · Zbl 0243.70014
[69] R.W. Weber , Hamiltonian Systems with Constraints and their Meaning in Mechanics , Arch. Rat. Mech. Anal. , Vol. 91 , 1985 , pp. 309 - 335 . MR 807817 | Zbl 0606.58024 · Zbl 0606.58024 · doi:10.1007/BF00282337
[70] N.A. Fufaev , A Sphere Rolling on a Horizontal Rotating Plane , P.M.M. , Vol. 47 , 1984 , pp. 27 - 29 . Zbl 0534.70008 · Zbl 0534.70008 · doi:10.1016/0021-8928(83)90029-1
[71] N.A. Fufaev , Theory of the Motion of Systems with Rolling , P.M.M. , Vol. 49 , 1985 , pp. 41 - 49 . Zbl 0593.70021 · Zbl 0593.70021 · doi:10.1016/0021-8928(85)90124-8
[72] Fam Guen , On the Theory of Ignorable Displacements for Generalized Poincare’-Chetaev Equation , P.M.M. , Vol. 45 , 1981 , pp. 343 - 350 . Zbl 0508.70011 · Zbl 0508.70011 · doi:10.1016/0021-8928(81)90064-2
[73] S. Benenti , Geometrical Aspects of the Dynamics of Non-Holonomic Systems , Conférence Journées Relativistes 1987 , Chambery , 14-16 mai 1987 .
[74] E.G. Virga , Un’osservazione sui vincoli non perfetti , Riv. Mat. Univ. Parma , Vol. ( 4 ), 13 , 1987 , pp. 379 - 384 . Zbl 0672.70018 · Zbl 0672.70018
[75] F. Cardin and G. Zanzotto , On Constrained Mechanical Systems: D’Alembert and Gauss’ Principles , J. Math. Phys. , Vol. 30 , 1989 , pp. 1473 - 1479 . MR 1002251 | Zbl 0678.70018 · Zbl 0678.70018 · doi:10.1063/1.528278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.