Bourque, Maxime Fortier; Rafi, Kasra Local maxima of the systole function. (English) Zbl 07499438 J. Eur. Math. Soc. (JEMS) 24, No. 2, 623-668 (2022). MSC: 30F60 32G15 PDF BibTeX XML Cite \textit{M. F. Bourque} and \textit{K. Rafi}, J. Eur. Math. Soc. (JEMS) 24, No. 2, 623--668 (2022; Zbl 07499438) Full Text: DOI OpenURL
Nakanishi, Toshihiro Teichmüller space and the mapping class group of the twice punctured torus. (English) Zbl 1478.32038 J. Math. Soc. Japan 73, No. 4, 1221-1252 (2021). MSC: 32G15 30F35 30F60 PDF BibTeX XML Cite \textit{T. Nakanishi}, J. Math. Soc. Japan 73, No. 4, 1221--1252 (2021; Zbl 1478.32038) Full Text: DOI Link OpenURL
Bridgeman, Martin; Canary, Richard; Labourie, François Simple length rigidity for Hitchin representations. (English) Zbl 1433.53072 Adv. Math. 360, Article ID 106901, 61 p. (2020). Reviewer: Alessio Savini (Bologna) MSC: 53C24 PDF BibTeX XML Cite \textit{M. Bridgeman} et al., Adv. Math. 360, Article ID 106901, 61 p. (2020; Zbl 1433.53072) Full Text: DOI arXiv OpenURL
Bridgeman, Martin; Canary, Richard; Sambarino, Andrés An introduction to pressure metrics for higher Teichmüller spaces. (English) Zbl 1397.37032 Ergodic Theory Dyn. Syst. 38, No. 6, 2001-2035 (2018). MSC: 37D35 30F60 32G15 PDF BibTeX XML Cite \textit{M. Bridgeman} et al., Ergodic Theory Dyn. Syst. 38, No. 6, 2001--2035 (2018; Zbl 1397.37032) Full Text: DOI arXiv OpenURL
Pan, Huiping On finite marked length spectral rigidity of hyperbolic cone surfaces and the Thurston metric. (English) Zbl 1378.30019 Geom. Dedicata 191, 53-83 (2017). MSC: 30F60 PDF BibTeX XML Cite \textit{H. Pan}, Geom. Dedicata 191, 53--83 (2017; Zbl 1378.30019) Full Text: DOI arXiv OpenURL
Nakamura, Gou; Nakanishi, Toshihiro Parametrizations of Teichmüller spaces by trace functions and action of mapping class groups. (English) Zbl 1337.32025 Conform. Geom. Dyn. 20, 25-42 (2016). MSC: 32G15 30F35 PDF BibTeX XML Cite \textit{G. Nakamura} and \textit{T. Nakanishi}, Conform. Geom. Dyn. 20, 25--42 (2016; Zbl 1337.32025) Full Text: DOI OpenURL
Gendulphe, Matthieu; Komori, Yohei Polyhedral realization of a Thurston compactification. (English. French summary) Zbl 1295.30094 Ann. Fac. Sci. Toulouse, Math. (6) 23, No. 1, 95-114 (2014). MSC: 30F10 30F60 PDF BibTeX XML Cite \textit{M. Gendulphe} and \textit{Y. Komori}, Ann. Fac. Sci. Toulouse, Math. (6) 23, No. 1, 95--114 (2014; Zbl 1295.30094) Full Text: DOI Link Link OpenURL
Nakamura, Gou; Nakanishi, Toshihiro Parametrizations of some Teichmüller spaces by trace functions. (English) Zbl 1275.32014 Conform. Geom. Dyn. 17, 47-57 (2013). Reviewer: Jayadev Athreya (Urbana) MSC: 32G15 30F35 30F60 PDF BibTeX XML Cite \textit{G. Nakamura} and \textit{T. Nakanishi}, Conform. Geom. Dyn. 17, 47--57 (2013; Zbl 1275.32014) Full Text: DOI OpenURL
Felikson, Anna; Natanzon, Sergey Moduli via double pants decompositions. (English) Zbl 1250.32012 Differ. Geom. Appl. 30, No. 5, 490-508 (2012). MSC: 32G15 57M50 PDF BibTeX XML Cite \textit{A. Felikson} and \textit{S. Natanzon}, Differ. Geom. Appl. 30, No. 5, 490--508 (2012; Zbl 1250.32012) Full Text: DOI arXiv OpenURL
Duchin, Moon; Leininger, Christopher J.; Rafi, Kasra Length spectra and degeneration of flat metrics. (English) Zbl 1207.53052 Invent. Math. 182, No. 2, 231-277 (2010). Reviewer: Dumitru Motreanu (Perpignan) MSC: 53C22 32G15 PDF BibTeX XML Cite \textit{M. Duchin} et al., Invent. Math. 182, No. 2, 231--277 (2010; Zbl 1207.53052) Full Text: DOI arXiv OpenURL
Schmutz Schaller, Paul The modular torus has maximal length spectrum. (English) Zbl 0867.30031 Geom. Funct. Anal. 6, No. 6, 1057-1073 (1996). Reviewer: Gh.Pitiş (Braşov) MSC: 30F35 11F06 53C22 PDF BibTeX XML Cite \textit{P. Schmutz Schaller}, Geom. Funct. Anal. 6, No. 6, 1057--1073 (1996; Zbl 0867.30031) Full Text: DOI EuDML OpenURL
Luo, Feng Geodesic length functions and Teichmüller spaces. (English) Zbl 0871.32014 Electron. Res. Announc. Am. Math. Soc. 2, No. 1, 34-41 (1996). MSC: 32G15 30F60 PDF BibTeX XML Cite \textit{F. Luo}, Electron. Res. Announc. Am. Math. Soc. 3, No. 1, 34--41 (1996; Zbl 0871.32014) Full Text: DOI arXiv Link OpenURL
Schmutz, P. Riemann surfaces with shortest geodesic of maximal length. (English) Zbl 0810.53034 Geom. Funct. Anal. 3, No. 6, 564-631 (1993). Reviewer: Gh.Pitiş (Braşov) MSC: 53C22 30F60 PDF BibTeX XML Cite \textit{P. Schmutz}, Geom. Funct. Anal. 3, No. 6, 564--631 (1993; Zbl 0810.53034) Full Text: DOI EuDML OpenURL