Li, Xiaolong; Wang, Kui First Robin eigenvalue of the \(p\)-Laplacian on Riemannian manifolds. (English) Zbl 1472.35262 Math. Z. 298, No. 3-4, 1033-1047 (2021). Reviewer: Petr Tomiczek (Plzeň) MSC: 35P30 35P15 35J25 35J92 35R01 58C40 58J50 PDF BibTeX XML Cite \textit{X. Li} and \textit{K. Wang}, Math. Z. 298, No. 3--4, 1033--1047 (2021; Zbl 1472.35262) Full Text: DOI arXiv OpenURL
Bucur, Dorin; Henrot, Antoine; Michetti, Marco Asymptotic behaviour of the Steklov spectrum on dumbbell domains. (English) Zbl 1460.35244 Commun. Partial Differ. Equations 46, No. 2, 362-393 (2021). MSC: 35P20 35J25 PDF BibTeX XML Cite \textit{D. Bucur} et al., Commun. Partial Differ. Equations 46, No. 2, 362--393 (2021; Zbl 1460.35244) Full Text: DOI arXiv OpenURL
Savo, Alessandro Optimal eigenvalue estimates for the Robin Laplacian on Riemannian manifolds. (English) Zbl 1430.58023 J. Differ. Equations 268, No. 5, 2280-2308 (2020). MSC: 58J50 58J32 35P15 PDF BibTeX XML Cite \textit{A. Savo}, J. Differ. Equations 268, No. 5, 2280--2308 (2020; Zbl 1430.58023) Full Text: DOI arXiv OpenURL
Cito, Simone Existence and regularity of optimal convex shapes for functionals involving the Robin eigenvalues. (English) Zbl 1429.49044 J. Convex Anal. 26, No. 3, 925-943 (2019). Reviewer: Antoine Henrot (Vandœuvre-lès-Nancy) MSC: 49Q10 49R05 PDF BibTeX XML Cite \textit{S. Cito}, J. Convex Anal. 26, No. 3, 925--943 (2019; Zbl 1429.49044) Full Text: Link OpenURL
Bucur, Dorin; Giacomini, Alessandro Minimization of the \(k\)-th eigenvalue of the Robin-Laplacian. (English) Zbl 1429.49015 J. Funct. Anal. 277, No. 3, 643-687 (2019). Reviewer: Davide Buoso (Lausanne) MSC: 49J45 49J35 26A45 35R35 35J20 49R05 35P15 PDF BibTeX XML Cite \textit{D. Bucur} and \textit{A. Giacomini}, J. Funct. Anal. 277, No. 3, 643--687 (2019; Zbl 1429.49015) Full Text: DOI OpenURL
Bucur, Dorin; Fragalà, Ilaria On the honeycomb conjecture for Robin Laplacian eigenvalues. (English) Zbl 1414.49044 Commun. Contemp. Math. 21, No. 2, Article ID 1850007, 29 p. (2019). Reviewer: Denis Borisov (Ufa) MSC: 49Q10 52C20 51M16 65N25 35J20 35J25 35P15 49R05 PDF BibTeX XML Cite \textit{D. Bucur} and \textit{I. Fragalà}, Commun. Contemp. Math. 21, No. 2, Article ID 1850007, 29 p. (2019; Zbl 1414.49044) Full Text: DOI arXiv OpenURL
Gavitone, Nunzia; Trani, Leonardo On the first Robin eigenvalue of a class of anisotropic operators. (English) Zbl 1404.35304 Milan J. Math. 86, No. 2, 201-223 (2018). MSC: 35P15 35P30 35J60 PDF BibTeX XML Cite \textit{N. Gavitone} and \textit{L. Trani}, Milan J. Math. 86, No. 2, 201--223 (2018; Zbl 1404.35304) Full Text: DOI arXiv OpenURL
Antunes, Pedro R. S.; Freitas, Pedro; Krejčiřík, David Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. (English) Zbl 1375.35284 Adv. Calc. Var. 10, No. 4, 357-379 (2017). MSC: 35P15 58J50 35J05 35J20 35J25 PDF BibTeX XML Cite \textit{P. R. S. Antunes} et al., Adv. Calc. Var. 10, No. 4, 357--379 (2017; Zbl 1375.35284) Full Text: DOI arXiv OpenURL
Bandle, Catherine; Wagner, Alfred Second domain variation for problems with Robin boundary conditions. (English) Zbl 1329.49082 J. Optim. Theory Appl. 167, No. 2, 430-463 (2015). MSC: 49Q10 49K20 49J20 49R05 35J20 35P15 35N25 PDF BibTeX XML Cite \textit{C. Bandle} and \textit{A. Wagner}, J. Optim. Theory Appl. 167, No. 2, 430--463 (2015; Zbl 1329.49082) Full Text: DOI arXiv OpenURL
Kovařík, Hynek On the lowest eigenvalue of Laplace operators with mixed boundary conditions. (English) Zbl 1317.47045 J. Geom. Anal. 24, No. 3, 1509-1525 (2014). Reviewer: Dian K. Palagachev (Bari) MSC: 47F05 49R05 PDF BibTeX XML Cite \textit{H. Kovařík}, J. Geom. Anal. 24, No. 3, 1509--1525 (2014; Zbl 1317.47045) Full Text: DOI arXiv OpenURL
Gesztesy, Fritz; Mitrea, Marius; Nichols, Roger Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions. (English) Zbl 1296.47041 J. Anal. Math. 122, 229-287 (2014). MSC: 47F05 46E35 47D06 PDF BibTeX XML Cite \textit{F. Gesztesy} et al., J. Anal. Math. 122, 229--287 (2014; Zbl 1296.47041) Full Text: DOI arXiv OpenURL
Dai, Qiu-Yi; Fu, Yu-Xia Faber-Krahn inequality for Robin problems involving \(p\)-Laplacian. (English) Zbl 1209.35093 Acta Math. Appl. Sin., Engl. Ser. 27, No. 1, 13-28 (2011). MSC: 35P30 35P15 35J92 35J70 35J25 PDF BibTeX XML Cite \textit{Q.-Y. Dai} and \textit{Y.-X. Fu}, Acta Math. Appl. Sin., Engl. Ser. 27, No. 1, 13--28 (2011; Zbl 1209.35093) Full Text: DOI arXiv OpenURL
Colorado, Eduardo; García-Melián, Jorge The behavior of the principal eigenvalue of a mixed elliptic problem with respect to a parameter. (English) Zbl 1209.35092 J. Math. Anal. Appl. 377, No. 1, 53-69 (2011). MSC: 35P20 35J25 35J61 35B40 35B30 PDF BibTeX XML Cite \textit{E. Colorado} and \textit{J. García-Melián}, J. Math. Anal. Appl. 377, No. 1, 53--69 (2011; Zbl 1209.35092) Full Text: DOI OpenURL
Kennedy, J. B. On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians. (English) Zbl 1221.35262 Z. Angew. Math. Phys. 61, No. 5, 781-792 (2010). MSC: 35P15 35J25 35J60 PDF BibTeX XML Cite \textit{J. B. Kennedy}, Z. Angew. Math. Phys. 61, No. 5, 781--792 (2010; Zbl 1221.35262) Full Text: DOI arXiv OpenURL
Gesztesy, Fritz; Mitrea, Marius Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. (English) Zbl 1181.35155 J. Differ. Equations 247, No. 10, 2871-2896 (2009). MSC: 35P15 35J05 47F05 47B25 PDF BibTeX XML Cite \textit{F. Gesztesy} and \textit{M. Mitrea}, J. Differ. Equations 247, No. 10, 2871--2896 (2009; Zbl 1181.35155) Full Text: DOI arXiv OpenURL
Fu, Yu-Xia; Dai, Qiu-Yi Positive solutions of the Robin problem for semilinear elliptic equations on annuli. (English) Zbl 1198.35096 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 19, No. 3, 175-188 (2008). MSC: 35J61 35J91 35J25 35B09 35A01 PDF BibTeX XML Cite \textit{Y.-X. Fu} and \textit{Q.-Y. Dai}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 19, No. 3, 175--188 (2008; Zbl 1198.35096) Full Text: DOI Link OpenURL