×

(Co)homology of cyclic monoids. (English) Zbl 1382.20055


MSC:

20M50 Connections of semigroups with homological algebra and category theory
20M10 General structure theory for semigroups
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 1. E. R. Aznar and A. M. Sevilla, Beck, and Leech coextensions, Semigroup Forum61 (2000) 385-404. genRefLink(16, ’S0218196716500375BIB001’, ’10.1007
[2] 2. M. Barr and J. Beck, Homology and standard constructions, in Seminar on Triples and Categorical Homology, Lecture Notes in Mathematics, Vol. 80 (Springer, Berlin, 1969), pp. 245-335. genRefLink(16, ’S0218196716500375BIB002’, ’10.1007
[3] 3. S. Eilenberg, Topological methods in abstract algebra, Bull. Amer. Math. Soc.55 (1949) 3-27. genRefLink(16, ’S0218196716500375BIB003’, ’10.1090
[4] 4. F. G. Frobenius, Über endliche Gruppen, Sitzungsber. Preuss. Akad. Wiss. Berlin (1895) 163-194. · JFM 26.0157.01
[5] 5. M. Calvo, A. M. Cegarra and B. A. Heredia, Structure and classification of monoidal groupoids, Semigroup Forum87 (2013) 35-79. genRefLink(16, ’S0218196716500375BIB005’, ’10.1007
[6] 6. Z. Fiedorowicz, Classifying spaces of topological monoids and categories, Amer. J. Math.106 (1984) 301-325. genRefLink(16, ’S0218196716500375BIB006’, ’10.2307
[7] 7. P. A. Grillet, Commutative Semigroups, Advances in Mathematics (Kluwer Academic Publisher, Philip Drive Norwell, 2001). genRefLink(16, ’S0218196716500375BIB007’, ’10.1007
[8] 8. P. A. Grillet, Partial resolutions in monoid cohomology, Algebra Discrete Math.4 (2004) 12-31. · Zbl 1093.20036
[9] 9. P. A. Grillet, Monoid objects over semigroups, and their actions, Comm. Algebra33 (2005) 271-299. genRefLink(16, ’S0218196716500375BIB009’, ’10.1081
[10] 10. R. Kurdiani and T. Pirashvili, Functor homology and homology of commutative monoids, Semigroup Forum92 (2016) 102-120. genRefLink(16, ’S0218196716500375BIB010’, ’10.1007
[11] 11. A. A. Khusainov, Cubical homology and the Leech dimension of free partially commutative monoids, Sb. Math.199 (2008) 1859-1884. genRefLink(16, ’S0218196716500375BIB011’, ’10.1070
[12] 12. J. Leech, Two papers: -coextensions of monoids and the structure of a band of groups, Mem. Amer. Math. Soc.157 (1975) 1-66. · Zbl 0303.20048
[13] 13. J. Leech, The cohomology of monoids, unpublished 1976 lecture notes. · Zbl 0909.20048
[14] 14. J. Leech, Cohomology theory for monoids congruences, Houston J. Math.11 (1985) 207-223. genRefLink(128, ’S0218196716500375BIB014’, ’A1985AKN4600009’); · Zbl 0574.20055
[15] 15. S. Mac Lane, Homology (Springer-Verlag, 1975).
[16] 16. S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5, 2nd edn. (Springer, New York, 1978). genRefLink(16, ’S0218196716500375BIB016’, ’10.1007 · Zbl 0232.18001
[17] 17. W. R. Nico, On the cohomology of finite semigroups, J. Algebra11 (1969) 598-612. genRefLink(16, ’S0218196716500375BIB017’, ’10.1016
[18] 18. W. R. Nico, Homological dimension in semigroup algebras, J. Algebra18 (1971) 404-413. genRefLink(16, ’S0218196716500375BIB018’, ’10.1016
[19] 19. C. Wells, Extension theories for monoids, Semigroup Forum16 (1978) 13-35. genRefLink(16, ’S0218196716500375BIB019’, ’10.1007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.