Zhao, Huali; Liu, Hongwei Infeasible Mehrotra-type predictor-corrector algorithm for Cartesian \(P_\ast(\kappa )\) nonlinear complementarity problems over symmetric cones. (English) Zbl 07474791 Int. J. Comput. Math. 96, No. 3, 457-473 (2019). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{H. Liu}, Int. J. Comput. Math. 96, No. 3, 457--473 (2019; Zbl 07474791) Full Text: DOI OpenURL
Sim, Chee-Khian Interior point method on semi-definite linear complementarity problems using the Nesterov-Todd (NT) search direction: polynomial complexity and local convergence. (English) Zbl 1433.90172 Comput. Optim. Appl. 74, No. 2, 583-621 (2019). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{C.-K. Sim}, Comput. Optim. Appl. 74, No. 2, 583--621 (2019; Zbl 1433.90172) Full Text: DOI OpenURL
Asadi, S.; Mansouri, H.; Zangiabadi, M. A primal-dual interior-point algorithm for symmetric cone convex quadratic programming based on the commutative class directions. (English) Zbl 1418.90260 Acta Math. Appl. Sin., Engl. Ser. 35, No. 2, 359-373 (2019). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{S. Asadi} et al., Acta Math. Appl. Sin., Engl. Ser. 35, No. 2, 359--373 (2019; Zbl 1418.90260) Full Text: DOI OpenURL
Yang, Ximei; Bai, Yanqin An adaptive infeasible-interior-point method with the one-norm wide neighborhood for semi-definite programming. (English) Zbl 1415.65141 J. Sci. Comput. 78, No. 3, 1790-1810 (2019). MSC: 65K05 90C22 90C51 PDF BibTeX XML Cite \textit{X. Yang} and \textit{Y. Bai}, J. Sci. Comput. 78, No. 3, 1790--1810 (2019; Zbl 1415.65141) Full Text: DOI OpenURL
Alzalg, Baha; Badarneh, Khaled; Ababneh, Ayat An infeasible interior-point algorithm for stochastic second-order cone optimization. (English) Zbl 1414.90261 J. Optim. Theory Appl. 181, No. 1, 324-346 (2019). MSC: 90C25 90C06 90C15 90C30 90C51 90C60 PDF BibTeX XML Cite \textit{B. Alzalg} et al., J. Optim. Theory Appl. 181, No. 1, 324--346 (2019; Zbl 1414.90261) Full Text: DOI OpenURL
Asadi, Soodabeh; Mansouri, Hossein; Darvay, Zsolt; Zangiabadi, Maryam; Mahdavi-Amiri, Nezam Large-neighborhood infeasible predictor-corrector algorithm for horizontal linear complementarity problems over Cartesian product of symmetric cones. (English) Zbl 1409.90198 J. Optim. Theory Appl. 180, No. 3, 811-829 (2019). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{S. Asadi} et al., J. Optim. Theory Appl. 180, No. 3, 811--829 (2019; Zbl 1409.90198) Full Text: DOI OpenURL
Asadi, S.; Mansouri, H.; Darvay, Zs.; Lesaja, G.; Zangiabadi, M. A long-step feasible predictor-corrector interior-point algorithm for symmetric cone optimization. (English) Zbl 1407.90345 Optim. Methods Softw. 34, No. 2, 336-362 (2019). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{S. Asadi} et al., Optim. Methods Softw. 34, No. 2, 336--362 (2019; Zbl 1407.90345) Full Text: DOI OpenURL
Zhao, Huali; Liu, Hongwei Infeasible path-following interior point algorithm for Cartesian \(P_\ast(\kappa )\) nonlinear complementarity problems over symmetric cones. (English) Zbl 07470645 Int. J. Comput. Math. 95, No. 5, 845-869 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{H. Liu}, Int. J. Comput. Math. 95, No. 5, 845--869 (2018; Zbl 07470645) Full Text: DOI OpenURL
Pirhaji, Mohammad; Zangiabadi, Maryam; Mansouri, Hossein; Amin, Saman H. An arc search interior-point algorithm for monotone linear complementarity problems over symmetric cones. (English) Zbl 07394596 Math. Model. Anal. 23, No. 1, 1-16 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{M. Pirhaji} et al., Math. Model. Anal. 23, No. 1, 1--16 (2018; Zbl 07394596) Full Text: DOI OpenURL
Pirhaji, M.; Zangiabadi, M.; Mansouri, H. A corrector-predictor arc search interior-point algorithm for symmetric optimization. (English) Zbl 1438.90360 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 4, 1269-1284 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{M. Pirhaji} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 4, 1269--1284 (2018; Zbl 1438.90360) Full Text: DOI OpenURL
Mansouri, H.; Pirhaji, M.; Zangiabadi, M. An arc search infeasible interior-point algorithm for symmetric optimization using a new wide neighborhood. (English) Zbl 1417.90139 Acta Appl. Math. 157, No. 1, 75-91 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Mansouri} et al., Acta Appl. Math. 157, No. 1, 75--91 (2018; Zbl 1417.90139) Full Text: DOI OpenURL
Asadi, S.; Mansouri, H.; Lesaja, G.; Zangiabadi, M. A long-step interior-point algorithm for symmetric cone Cartesian \(P_\ast (\kappa)\)-HLCP. (English) Zbl 1416.90049 Optimization 67, No. 11, 2031-2060 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{S. Asadi} et al., Optimization 67, No. 11, 2031--2060 (2018; Zbl 1416.90049) Full Text: DOI OpenURL
Zhao, Huali; Liu, Hongwei Iterative complexities of a class of homogeneous algorithms for monotone nonlinear complementarity problems over symmetric cones. (English) Zbl 1414.90341 Optimization 67, No. 9, 1505-1521 (2018). MSC: 90C33 90C51 90C25 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{H. Liu}, Optimization 67, No. 9, 1505--1521 (2018; Zbl 1414.90341) Full Text: DOI OpenURL
Kheirfam, Behrouz A modified and simplified full Nesterov-Todd step \(\mathcal {O}(N)\) infeasible interior-point method for second-order cone optimization. (English) Zbl 1413.90203 J. Oper. Res. Soc. China 6, No. 2, 301-315 (2018). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, J. Oper. Res. Soc. China 6, No. 2, 301--315 (2018; Zbl 1413.90203) Full Text: DOI OpenURL
Shahraki, M. Sayadi; Mansouri, H.; Zangiabadi, M. A wide neighborhood infeasible-interior-point method with arc-search for \(P_\ast (\kappa)\)-SCLCPs. (English) Zbl 1398.90182 Optimization 67, No. 3, 409-425 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{M. S. Shahraki} et al., Optimization 67, No. 3, 409--425 (2018; Zbl 1398.90182) Full Text: DOI OpenURL
Zhao, Huali; Liu, Hongwei A new infeasible Mehrotra-type predictor-corrector algorithm for nonlinear complementarity problems over symmetric cones. (English) Zbl 1384.90109 J. Optim. Theory Appl. 176, No. 2, 410-427 (2018). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{H. Liu}, J. Optim. Theory Appl. 176, No. 2, 410--427 (2018; Zbl 1384.90109) Full Text: DOI OpenURL
Kheirfam, B. An arc-search infeasible interior-point algorithm for horizontal linear complementarity problem in the \(\mathcal N^-_{\infty}\)-neighbourhood of the central path. (English) Zbl 1393.90135 Int. J. Comput. Math. 94, No. 12, 2271-2282 (2017). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{B. Kheirfam}, Int. J. Comput. Math. 94, No. 12, 2271--2282 (2017; Zbl 1393.90135) Full Text: DOI OpenURL
Mansouri, Hossein; Pirhaji, Mohammad; Zangiabadi, Maryam A weighted-path following interior-point algorithm for Cartesian \(P_\ast(\kappa)\)-LCP over symmetric cones. (English) Zbl 1390.90539 Commun. Korean Math. Soc. 32, No. 3, 765-778 (2017). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Mansouri} et al., Commun. Korean Math. Soc. 32, No. 3, 765--778 (2017; Zbl 1390.90539) Full Text: DOI OpenURL
Liu, Chang-He; Huang, Yuan-Yuan; Shang, You-Lin Polynomial convergence of primal-dual path-following algorithms for symmetric cone programming based on wide neighborhoods and a new class of directions. (English) Zbl 1411.90356 J. Oper. Res. Soc. China 5, No. 3, 333-346 (2017). MSC: 90C51 90C05 90C25 PDF BibTeX XML Cite \textit{C.-H. Liu} et al., J. Oper. Res. Soc. China 5, No. 3, 333--346 (2017; Zbl 1411.90356) Full Text: DOI OpenURL
Yang, Ximei; Zhang, Yinkui A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for symmetric optimization with the arc-search strategy. (English) Zbl 1375.90217 J. Inequal. Appl. 2017, Paper No. 291, 15 p. (2017). MSC: 90C05 90C25 90C51 PDF BibTeX XML Cite \textit{X. Yang} and \textit{Y. Zhang}, J. Inequal. Appl. 2017, Paper No. 291, 15 p. (2017; Zbl 1375.90217) Full Text: DOI OpenURL
Liu, Chang-he; Shang, You-lin; Han, Ping A new infeasible-interior-point algorithm for linear programming over symmetric cones. (English) Zbl 1407.90347 Acta Math. Appl. Sin., Engl. Ser. 33, No. 3, 771-788 (2017). MSC: 90C51 90C05 90C22 90C25 PDF BibTeX XML Cite \textit{C.-h. Liu} et al., Acta Math. Appl. Sin., Engl. Ser. 33, No. 3, 771--788 (2017; Zbl 1407.90347) Full Text: DOI OpenURL
Yang, Ximei; Liu, Hongwei; Zhang, Yinkui An arc-search infeasible-interior-point method for symmetric optimization in a wide neighborhood of the central path. (English) Zbl 1471.90166 Optim. Lett. 11, No. 1, 135-152 (2017). MSC: 90C51 PDF BibTeX XML Cite \textit{X. Yang} et al., Optim. Lett. 11, No. 1, 135--152 (2017; Zbl 1471.90166) Full Text: DOI OpenURL
Kheirfam, Behrouz; Wang, Guoqiang An infeasible full NT-step interior point method for circular optimization. (English) Zbl 1365.90271 Numer. Algebra Control Optim. 7, No. 2, 171-184 (2017). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{G. Wang}, Numer. Algebra Control Optim. 7, No. 2, 171--184 (2017; Zbl 1365.90271) Full Text: DOI OpenURL
Mohammad-Nezhad, Ali; Terlaky, Tamás A polynomial primal-dual affine scaling algorithm for symmetric conic optimization. (English) Zbl 1360.90291 Comput. Optim. Appl. 66, No. 3, 577-600 (2017). MSC: 90C51 90C25 PDF BibTeX XML Cite \textit{A. Mohammad-Nezhad} and \textit{T. Terlaky}, Comput. Optim. Appl. 66, No. 3, 577--600 (2017; Zbl 1360.90291) Full Text: DOI OpenURL
Asadi, S.; Mansouri, H.; Darvay, Zs. An infeasible full-NT step IPM for \(P_\ast(\kappa)\) horizontal linear complementarity problem over Cartesian product of symmetric cones. (English) Zbl 1392.90114 Optimization 66, No. 2, 225-250 (2017). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{S. Asadi} et al., Optimization 66, No. 2, 225--250 (2017; Zbl 1392.90114) Full Text: DOI OpenURL
Kheirfam, Behrouz An infeasible full-NT step interior point algorithm for CQSCO. (English) Zbl 1360.90290 Numer. Algorithms 74, No. 1, 93-109 (2017). Reviewer: Efstratios Rappos (Aubonne) MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Numer. Algorithms 74, No. 1, 93--109 (2017; Zbl 1360.90290) Full Text: DOI OpenURL
Yang, Ximei; Zhang, Yinkui; Liu, Hongwei; Pei, Yonggang A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for linear programming over symmetric cones. (English) Zbl 1346.90580 Numer. Algorithms 72, No. 4, 915-936 (2016). MSC: 90C05 90C25 90C51 PDF BibTeX XML Cite \textit{X. Yang} et al., Numer. Algorithms 72, No. 4, 915--936 (2016; Zbl 1346.90580) Full Text: DOI OpenURL
Yang, Ximei; Zhang, Yinkui; Liu, Hongwei; Shen, Peiping A new second-order infeasible primal-dual path-following algorithm for symmetric optimization. (English) Zbl 1346.90581 Numer. Funct. Anal. Optim. 37, No. 4, 499-519 (2016). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{X. Yang} et al., Numer. Funct. Anal. Optim. 37, No. 4, 499--519 (2016; Zbl 1346.90581) Full Text: DOI OpenURL
Liu, Chang-He; Wu, Dan; Shang, You-Lin A new infeasible-interior-point algorithm based on wide neighborhoods for symmetric cone programming. (English) Zbl 1342.90226 J. Oper. Res. Soc. China 4, No. 2, 147-165 (2016). MSC: 90C51 90C05 90C25 PDF BibTeX XML Cite \textit{C.-H. Liu} et al., J. Oper. Res. Soc. China 4, No. 2, 147--165 (2016; Zbl 1342.90226) Full Text: DOI OpenURL
Tao, Jiyuan A Lie product type formula in Euclidean Jordan algebras. (English) Zbl 1348.17019 Spec. Matrices 4, 255-261 (2016). MSC: 17C20 17C55 PDF BibTeX XML Cite \textit{J. Tao}, Spec. Matrices 4, 255--261 (2016; Zbl 1348.17019) Full Text: DOI OpenURL
Wang, Guoqiang; Tao, Jiyuan; Kong, Lingchen A note on an inequality involving Jordan product in Euclidean Jordan algebras. (English) Zbl 1352.17033 Optim. Lett. 10, No. 4, 731-736 (2016). MSC: 17C20 17C55 15B33 PDF BibTeX XML Cite \textit{G. Wang} et al., Optim. Lett. 10, No. 4, 731--736 (2016; Zbl 1352.17033) Full Text: DOI OpenURL
Mohammadi, N.; Mansouri, H.; Zangiabadi, M.; Asadi, S. A full Nesterov-Todd step infeasible-interior-point algorithm for Cartesian \(P_\ast(\kappa)\) horizontal linear complementarity problems over symmetric cones. (English) Zbl 1370.90274 Optimization 65, No. 2, 539-565 (2016). MSC: 90C33 90C51 65K05 PDF BibTeX XML Cite \textit{N. Mohammadi} et al., Optimization 65, No. 2, 539--565 (2016; Zbl 1370.90274) Full Text: DOI OpenURL
Kheirfam, B.; Mahdavi-Amiri, N. An infeasible interior-point algorithm based on modified Nesterov and Todd directions for symmetric linear complementarity problem. (English) Zbl 1337.90083 Optimization 64, No. 7, 1577-1591 (2015). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{N. Mahdavi-Amiri}, Optimization 64, No. 7, 1577--1591 (2015; Zbl 1337.90083) Full Text: DOI OpenURL
Shahraki, Marzieh Sayadi; Mansouri, Hossein; Zangiabadi, Maryam A wide neighborhood interior-point method for Cartesian \(P_*(\kappa )\)-LCP over symmetric cones. (English) Zbl 1327.90391 J. Oper. Res. Soc. China 3, No. 3, 331-345 (2015). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{M. S. Shahraki} et al., J. Oper. Res. Soc. China 3, No. 3, 331--345 (2015; Zbl 1327.90391) Full Text: DOI OpenURL
Wang, G. Q.; Kong, L. C.; Tao, J. Y.; Lesaja, G. Improved complexity analysis of full Nesterov-Todd step feasible interior-point method for symmetric optimization. (English) Zbl 1336.90059 J. Optim. Theory Appl. 166, No. 2, 588-604 (2015); erratum ibid. 174, No. 2, 636-638 (2017). Reviewer: Maxim Ivanov Todorov (San Andres Cholula) MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang} et al., J. Optim. Theory Appl. 166, No. 2, 588--604 (2015; Zbl 1336.90059) Full Text: DOI OpenURL
Yang, Ximei; Liu, Hongwei; Zhang, Yinkui A new strategy in the complexity analysis of an infeasible-interior-point method for symmetric cone programming. (English) Zbl 1335.90113 J. Optim. Theory Appl. 166, No. 2, 572-587 (2015). Reviewer: Efstratios Rappos (Aubonne) MSC: 90C51 90C05 PDF BibTeX XML Cite \textit{X. Yang} et al., J. Optim. Theory Appl. 166, No. 2, 572--587 (2015; Zbl 1335.90113) Full Text: DOI OpenURL
Liu, Xinze; Liu, Hongwei; Wang, Weiwei Polynomial convergence of Mehrotra-type predictor-corrector algorithm for the Cartesian \(P_{\ast}(\kappa)\)-LCP over symmetric cones. (English) Zbl 1312.49034 Optimization 64, No. 4, 815-837 (2015). MSC: 49M15 90C25 90C51 90C05 PDF BibTeX XML Cite \textit{X. Liu} et al., Optimization 64, No. 4, 815--837 (2015; Zbl 1312.49034) Full Text: DOI OpenURL
Yang, Ximei; Liu, Hongwei; Liu, Changhe A Mehrotra-type predictor-corrector infeasible-interior-point method with a new one-norm neighborhood for symmetric optimization. (English) Zbl 1311.65075 J. Comput. Appl. Math. 283, 106-121 (2015). MSC: 65K05 90C25 90C51 PDF BibTeX XML Cite \textit{X. Yang} et al., J. Comput. Appl. Math. 283, 106--121 (2015; Zbl 1311.65075) Full Text: DOI OpenURL
Yang, Ximei; Liu, Hongwei; Dong, Xiaoliang Polynomial convergence of Mehrotra-type prediction-corrector infeasible-IPM for symmetric optimization based on the commutative class directions. (English) Zbl 1410.90244 Appl. Math. Comput. 230, 616-628 (2014). MSC: 90C51 65K05 90C05 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 230, 616--628 (2014; Zbl 1410.90244) Full Text: DOI OpenURL
Alzalg, Baha; Ariyawansa, K. A. Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming. (English) Zbl 1306.90103 J. Math. Anal. Appl. 409, No. 2, 973-995 (2014). MSC: 90C15 90C51 PDF BibTeX XML Cite \textit{B. Alzalg} and \textit{K. A. Ariyawansa}, J. Math. Anal. Appl. 409, No. 2, 973--995 (2014; Zbl 1306.90103) Full Text: DOI OpenURL
Kheirfam, Behrouz A generic interior-point algorithm for monotone symmetric cone linear complementarity problems based on a new kernel function. (English) Zbl 1311.90179 J. Math. Model. Algorithms Oper. Res. 13, No. 4, 471-491 (2014). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{B. Kheirfam}, J. Math. Model. Algorithms Oper. Res. 13, No. 4, 471--491 (2014; Zbl 1311.90179) Full Text: DOI OpenURL
Kheirfam, Behrouz A weighted-path-following method for symmetric cone linear complementarity problems. (English) Zbl 1304.90204 Numer. Algebra Control Optim. 4, No. 2, 141-150 (2014). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Numer. Algebra Control Optim. 4, No. 2, 141--150 (2014; Zbl 1304.90204) Full Text: DOI OpenURL
Liu, Xinze; Liu, Hongwei; Liu, Changhe Infeasible Mehrotra-type predictor-corrector interior-point algorithm for the Cartesian \(P_\ast(\kappa)\)-LCP over symmetric cones. (English) Zbl 1322.90101 Numer. Funct. Anal. Optim. 35, No. 5, 588-610 (2014). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Liu} et al., Numer. Funct. Anal. Optim. 35, No. 5, 588--610 (2014; Zbl 1322.90101) Full Text: DOI OpenURL
Kheirfam, B.; Mahdavi-Amiri, N. A new interior-point algorithm based on modified Nesterov-Todd direction for symmetric cone linear complementarity problem. (English) Zbl 1320.90092 Optim. Lett. 8, No. 3, 1017-1029 (2014). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{N. Mahdavi-Amiri}, Optim. Lett. 8, No. 3, 1017--1029 (2014; Zbl 1320.90092) Full Text: DOI OpenURL
Wang, G. Q.; Yu, C. J.; Teo, K. L. A new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization. (English) Zbl 1329.90169 Appl. Math. Comput. 221, 329-343 (2013). MSC: 90C51 90C22 PDF BibTeX XML Cite \textit{G. Q. Wang} et al., Appl. Math. Comput. 221, 329--343 (2013; Zbl 1329.90169) Full Text: DOI OpenURL
Kheirfam, Behrouz A full Nesterov-Todd step feasible weighted primal-dual interior-point algorithm for symmetric optimization. (English) Zbl 1296.90137 J. Oper. Res. Soc. China 1, No. 4, 467-481 (2013). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{B. Kheirfam}, J. Oper. Res. Soc. China 1, No. 4, 467--481 (2013; Zbl 1296.90137) Full Text: DOI OpenURL
Kheirfam, Behrouz A new infeasible interior-point method based on Darvay’s technique for symmetric optimization. (English) Zbl 1320.90082 Ann. Oper. Res. 211, 209-224 (2013). MSC: 90C30 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Ann. Oper. Res. 211, 209--224 (2013; Zbl 1320.90082) Full Text: DOI OpenURL
Kheirfam, Behrouz; Mahdavi-Amiri, Nezam New complexity analysis of a full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization. (English) Zbl 1320.90105 Kybernetika 49, No. 6, 883-896 (2013). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{N. Mahdavi-Amiri}, Kybernetika 49, No. 6, 883--896 (2013; Zbl 1320.90105) Full Text: Link OpenURL
Liu, Hongwei; Yang, Ximei; Liu, Changhe A new wide neighborhood primal-dual infeasible-interior-point method for symmetric cone programming. (English) Zbl 1274.90389 J. Optim. Theory Appl. 158, No. 3, 796-815 (2013). MSC: 90C30 90C51 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Optim. Theory Appl. 158, No. 3, 796--815 (2013; Zbl 1274.90389) Full Text: DOI OpenURL
Zangiabadi, M.; Gu, G.; Roos, C. A full Nesterov-Todd step infeasible interior-point method for second-order cone optimization. (English) Zbl 1274.90496 J. Optim. Theory Appl. 158, No. 3, 816-858 (2013). MSC: 90C51 90C30 PDF BibTeX XML Cite \textit{M. Zangiabadi} et al., J. Optim. Theory Appl. 158, No. 3, 816--858 (2013; Zbl 1274.90496) Full Text: DOI OpenURL
Wang, G. Q.; Zhang, Z. H.; Zhu, D. T. On extending primal-dual interior-point method for linear optimization to convex quadratic symmetric cone optimization. (English) Zbl 1332.90190 Numer. Funct. Anal. Optim. 34, No. 5, 576-603 (2013). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang} et al., Numer. Funct. Anal. Optim. 34, No. 5, 576--603 (2013; Zbl 1332.90190) Full Text: DOI OpenURL
Wang, G. Q.; Lesaja, G. Full Nesterov-Todd step feasible interior-point method for the Cartesian \(P_{\ast}(\kappa)\)-SCLCP. (English) Zbl 1267.90157 Optim. Methods Softw. 28, No. 3, 600-618 (2013). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang} and \textit{G. Lesaja}, Optim. Methods Softw. 28, No. 3, 600--618 (2013; Zbl 1267.90157) Full Text: DOI OpenURL
Yoshise, Akiko Complementarity problems over symmetric cones: A survey of recent developments in several aspects. (English) Zbl 1334.90180 Anjos, Miguel F. (ed.) et al., Handbook on semidefinite, conic and polynomial optimization. New York, NY: Springer (ISBN 978-1-4614-0768-3/hbk; 978-1-4614-0769-0/ebook). International Series in Operations Research & Management Science 166, 339-375 (2012). MSC: 90C33 90-02 PDF BibTeX XML Cite \textit{A. Yoshise}, Int. Ser. Oper. Res. Manag. Sci. 166, 339--375 (2012; Zbl 1334.90180) Full Text: DOI Link OpenURL
Wang, G. Q.; Bai, Y. Q. A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization. (English) Zbl 1256.90036 J. Optim. Theory Appl. 154, No. 3, 966-985 (2012). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang} and \textit{Y. Q. Bai}, J. Optim. Theory Appl. 154, No. 3, 966--985 (2012; Zbl 1256.90036) Full Text: DOI OpenURL
Liu, Changhe; Liu, Hongwei; Liu, Xinze Polynomial convergence of second-order mehrotra-type predictor-corrector algorithms over symmetric cones. (English) Zbl 1268.90128 J. Optim. Theory Appl. 154, No. 3, 949-965 (2012). Reviewer: Efstratios Rappos (Aubonne) MSC: 90C51 90C05 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Optim. Theory Appl. 154, No. 3, 949--965 (2012; Zbl 1268.90128) Full Text: DOI OpenURL
Luo, Ziyan; Xiu, Naihua; Kong, Lingchen Lyapunov-type least-squares problems over symmetric cones. (English) Zbl 1260.65032 Linear Algebra Appl. 437, No. 10, 2498-2515 (2012). Reviewer: Temur Jangveladze (Tbilisi) MSC: 65F20 90C25 90C30 90C46 15A04 15B48 15A24 65K05 PDF BibTeX XML Cite \textit{Z. Luo} et al., Linear Algebra Appl. 437, No. 10, 2498--2515 (2012; Zbl 1260.65032) Full Text: DOI OpenURL
Wang, G. Q. A new polynomial interior-point algorithm for the monotone linear complementarity problem over symmetric cones with full NT-steps. (English) Zbl 1247.90272 Asia-Pac. J. Oper. Res. 29, No. 2, Paper No. 7, 1250015, 20 p. (2012). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang}, Asia-Pac. J. Oper. Res. 29, No. 2, Paper No. 7, 1250015, 20 p. (2012; Zbl 1247.90272) Full Text: DOI OpenURL
Feng, Zengzhe A new \(O(\sqrt nL)\) iteration large-update primal-dual interior-point method for second-order cone programming. (English) Zbl 1246.90116 Numer. Funct. Anal. Optim. 33, No. 4, 397-414 (2012). Reviewer: Guoqiang Wang (Shanghai) MSC: 90C25 90C51 65K05 PDF BibTeX XML Cite \textit{Z. Feng}, Numer. Funct. Anal. Optim. 33, No. 4, 397--414 (2012; Zbl 1246.90116) Full Text: DOI OpenURL
Wang, G. Q.; Bai, Y. Q. A class of polynomial interior point algorithms for the Cartesian P-matrix linear complementarity problem over symmetric cones. (English) Zbl 1251.90392 J. Optim. Theory Appl. 152, No. 3, 739-772 (2012). Reviewer: Jean-Jacques Strodiot (Namur) MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{G. Q. Wang} and \textit{Y. Q. Bai}, J. Optim. Theory Appl. 152, No. 3, 739--772 (2012; Zbl 1251.90392) Full Text: DOI OpenURL
Lesaja, G.; Roos, C. Kernel-based interior-point methods for monotone linear complementarity problems over symmetric cones. (English) Zbl 1250.90097 J. Optim. Theory Appl. 150, No. 3, 444-474 (2011). Reviewer: Miguel Angel Goberna (Alicante) MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{G. Lesaja} and \textit{C. Roos}, J. Optim. Theory Appl. 150, No. 3, 444--474 (2011; Zbl 1250.90097) Full Text: DOI Link OpenURL
Gu, G.; Zangiabadi, M.; Roos, C. Full Nesterov-Todd step infeasible interior-point method for symmetric optimization. (English) Zbl 1245.90144 Eur. J. Oper. Res. 214, No. 3, 473-484 (2011). MSC: 90C51 PDF BibTeX XML Cite \textit{G. Gu} et al., Eur. J. Oper. Res. 214, No. 3, 473--484 (2011; Zbl 1245.90144) Full Text: DOI OpenURL
Zhang, Jian; Zhang, Kecun Polynomial complexity of an interior point algorithm with a second order corrector step for symmetric cone programming. (English) Zbl 1229.90084 Math. Methods Oper. Res. 73, No. 1, 75-90 (2011). Reviewer: Maxim Ivanov Todorov (San Andres Cholula) MSC: 90C05 90C25 90C51 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{K. Zhang}, Math. Methods Oper. Res. 73, No. 1, 75--90 (2011; Zbl 1229.90084) Full Text: DOI OpenURL
Fang, Liang A smoothing-type Newton method for second-order cone programming problems based on a new smooth function. (English) Zbl 1200.90137 J. Appl. Math. Comput. 34, No. 1-2, 147-161 (2010). MSC: 90C25 90C30 90C51 65K05 65Y20 PDF BibTeX XML Cite \textit{L. Fang}, J. Appl. Math. Comput. 34, No. 1--2, 147--161 (2010; Zbl 1200.90137) Full Text: DOI OpenURL
Luo, Ziyan; Xiu, Naihua Feasibility and solvability of Lyapunov-type linear programming over symmetric cones. (English) Zbl 1225.90099 Positivity 14, No. 3, 481-499 (2010). MSC: 90C25 90C46 49N15 15A09 PDF BibTeX XML Cite \textit{Z. Luo} and \textit{N. Xiu}, Positivity 14, No. 3, 481--499 (2010; Zbl 1225.90099) Full Text: DOI OpenURL
Fang, Liang; He, Guoping; Sun, Li A globally convergent non-interior point algorithm with full Newton step for second-order cone programming. (English) Zbl 1212.90299 Appl. Math., Praha 54, No. 5, 447-464 (2009). MSC: 90C25 90C30 90C51 65K05 65Y20 PDF BibTeX XML Cite \textit{L. Fang} et al., Appl. Math., Praha 54, No. 5, 447--464 (2009; Zbl 1212.90299) Full Text: DOI EuDML Link OpenURL
Luo, Zi-Yan; Xiu, Nai-Hua An \(O(rL)\) infeasible interior-point algorithm for symmetric cone LCP via CHKS function. (English) Zbl 1205.90280 Acta Math. Appl. Sin., Engl. Ser. 25, No. 4, 593-606 (2009). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z.-Y. Luo} and \textit{N.-H. Xiu}, Acta Math. Appl. Sin., Engl. Ser. 25, No. 4, 593--606 (2009; Zbl 1205.90280) Full Text: DOI OpenURL
Luo, ZiYan; Xiu, NaiHua Path-following interior point algorithms for the Cartesian \(P_{*}(\kappa )\)-LCP over symmetric cones. (English) Zbl 1237.90235 Sci. China, Ser. A 52, No. 8, 1769-1784 (2009). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Luo} and \textit{N. Xiu}, Sci. China, Ser. A 52, No. 8, 1769--1784 (2009; Zbl 1237.90235) Full Text: DOI OpenURL
Fang, Liang; He, Guoping; Hu, Yunhong A new smoothing Newton-type method for second-order cone programming problems. (English) Zbl 1183.65065 Appl. Math. Comput. 215, No. 3, 1020-1029 (2009). Reviewer: Efstratios Rappos (Athens) MSC: 65K05 90C25 90C51 PDF BibTeX XML Cite \textit{L. Fang} et al., Appl. Math. Comput. 215, No. 3, 1020--1029 (2009; Zbl 1183.65065) Full Text: DOI OpenURL
Gowda, M. Seetharama; Tao, Jiyuan Z-transformations on proper and symmetric cones. (English) Zbl 1167.90022 Math. Program. 117, No. 1-2 (B), 195-221 (2009). Reviewer: Qamrul Hasan Ansari (Aligarh) MSC: 90C33 17C55 15B48 37B25 PDF BibTeX XML Cite \textit{M. S. Gowda} and \textit{J. Tao}, Math. Program. 117, No. 1--2 (B), 195--221 (2009; Zbl 1167.90022) Full Text: DOI OpenURL
Baes, Michel Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras. (English) Zbl 1138.90018 Linear Algebra Appl. 422, No. 2-3, 664-700 (2007). Reviewer: Lyonell Boulton (Edinburgh) MSC: 90C25 52A41 47A55 PDF BibTeX XML Cite \textit{M. Baes}, Linear Algebra Appl. 422, No. 2--3, 664--700 (2007; Zbl 1138.90018) Full Text: DOI OpenURL