Dali, Ali; Abdelmalek, Samir; Bakdi, Azzeddine; Bettayeb, Maamar A class of PSO-tuned controllers in Lorenz chaotic system. (English) Zbl 07619068 Math. Comput. Simul. 204, 430-449 (2023). MSC: 93-XX 90-XX PDF BibTeX XML Cite \textit{A. Dali} et al., Math. Comput. Simul. 204, 430--449 (2023; Zbl 07619068) Full Text: DOI OpenURL
Hu, Chenyang; Wang, Qiao; Zhang, Xiefu; Tian, Zean; Wu, Xianming A new chaotic system with novel multiple shapes of two-channel attractors. (English) Zbl 1506.37045 Chaos Solitons Fractals 162, Article ID 112454, 11 p. (2022). MSC: 37D45 34C28 34C15 34C60 34D45 34C23 PDF BibTeX XML Cite \textit{C. Hu} et al., Chaos Solitons Fractals 162, Article ID 112454, 11 p. (2022; Zbl 1506.37045) Full Text: DOI OpenURL
Kavuran, Gürkan When machine learning meets fractional-order chaotic signals: detecting dynamical variations. (English) Zbl 1498.68242 Chaos Solitons Fractals 157, Article ID 111908, 13 p. (2022). MSC: 68T05 34A08 37D45 37M10 68T07 PDF BibTeX XML Cite \textit{G. Kavuran}, Chaos Solitons Fractals 157, Article ID 111908, 13 p. (2022; Zbl 1498.68242) Full Text: DOI OpenURL
Zhou, Hao; Tang, Sanyi Complex dynamics and sliding bifurcations of the Filippov Lorenz-Chen system. (English) Zbl 07614851 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250182, 29 p. (2022). MSC: 34A36 34C23 34C28 34D45 37D45 PDF BibTeX XML Cite \textit{H. Zhou} and \textit{S. Tang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250182, 29 p. (2022; Zbl 07614851) Full Text: DOI OpenURL
Rohila, Rajni; Mittal, R. C. Analysis of chaotic behavior of three-dimensional dynamical systems by a \(B\)-spline differential quadrature algorithm. (English) Zbl 07539588 Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022). MSC: 65Pxx 37Dxx 65Lxx PDF BibTeX XML Cite \textit{R. Rohila} and \textit{R. C. Mittal}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022; Zbl 07539588) Full Text: DOI OpenURL
Su, Haipeng; Luo, Runzi; Fu, Jiaojiao; Huang, Meichun Fixed time control and synchronization of a class of uncertain chaotic systems with disturbances via passive control method. (English) Zbl 07529673 Math. Comput. Simul. 198, 474-493 (2022). MSC: 93-XX 37-XX PDF BibTeX XML Cite \textit{H. Su} et al., Math. Comput. Simul. 198, 474--493 (2022; Zbl 07529673) Full Text: DOI OpenURL
Ouyang, Ziyi; Jin, Jie; Yu, Fei; Chen, Long; Ding, Lei Fully integrated Chen chaotic oscillation system. (English) Zbl 1490.37047 Discrete Dyn. Nat. Soc. 2022, Article ID 8613090, 7 p. (2022). MSC: 37D45 34C28 PDF BibTeX XML Cite \textit{Z. Ouyang} et al., Discrete Dyn. Nat. Soc. 2022, Article ID 8613090, 7 p. (2022; Zbl 1490.37047) Full Text: DOI OpenURL
Wang, Xiong; Chen, Guanrong; Clinton Sprott, Julien Chaotic systems with any number and various types of equilibria. (English) Zbl 1506.37049 Wang, Xiong (ed.) et al., Chaotic systems with multistability and hidden attractors. Cham: Springer. Emerg. Complex. Comput. 40, 125-146 (2021). MSC: 37D45 37C75 37C29 34C28 PDF BibTeX XML Cite \textit{X. Wang} et al., Emerg. Complex. Comput. 40, 125--146 (2021; Zbl 1506.37049) Full Text: DOI OpenURL
Owolabi, Kolade M. Robust synchronization of chaotic fractional-order systems with shifted Chebyshev spectral collocation method. (English) Zbl 07442633 J. Appl. Anal. 27, No. 2, 269-282 (2021). MSC: 26A33 35K57 65L05 65M06 93C10 PDF BibTeX XML Cite \textit{K. M. Owolabi}, J. Appl. Anal. 27, No. 2, 269--282 (2021; Zbl 07442633) Full Text: DOI OpenURL
Li, Xianyi; Mirjalol, Umirzakov Modeling and analysis of dynamics for a 3D mixed Lorenz system with a damped term. (English) Zbl 07412234 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217-241 (2021). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{X. Li} and \textit{U. Mirjalol}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217--241 (2021; Zbl 07412234) Full Text: DOI OpenURL
Suqi, Ma Two-dimensional manifolds of modified Chen system with time delay. (English) Zbl 1476.37047 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2150174, 4 p. (2021). MSC: 37C75 37C79 37M05 37M21 PDF BibTeX XML Cite \textit{M. Suqi}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2150174, 4 p. (2021; Zbl 1476.37047) Full Text: DOI OpenURL
Ma, Suqi Two-dimensional manifolds of controlled Chen system. (English) Zbl 1467.93151 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150122, 4 p. (2021). MSC: 93C15 34C37 34C25 PDF BibTeX XML Cite \textit{S. Ma}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150122, 4 p. (2021; Zbl 1467.93151) Full Text: DOI OpenURL
Yin, Chuntao Chaos detection of the Chen system with Caputo-Hadamard fractional derivative. (English) Zbl 1464.34065 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021). MSC: 34C28 34A34 34A08 34D08 37D45 PDF BibTeX XML Cite \textit{C. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021; Zbl 1464.34065) Full Text: DOI OpenURL
Pchelintsev, Alexander N. An accurate numerical method and algorithm for constructing solutions of chaotic systems. (English) Zbl 1483.65204 J. Appl. Nonlinear Dyn. 9, No. 2, 207-221 (2020). MSC: 65P20 37D45 37M05 PDF BibTeX XML Cite \textit{A. N. Pchelintsev}, J. Appl. Nonlinear Dyn. 9, No. 2, 207--221 (2020; Zbl 1483.65204) Full Text: DOI arXiv OpenURL
Ouannas, Adel; Azar, Ahmad Taher; Ziar, Toufik On inverse full state hybrid function projective synchronization for continuous-time chaotic dynamical systems with arbitrary dimensions. (English) Zbl 1454.37093 Differ. Equ. Dyn. Syst. 28, No. 4, 1045-1058 (2020). MSC: 37N35 93C10 37D45 34D06 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Differ. Equ. Dyn. Syst. 28, No. 4, 1045--1058 (2020; Zbl 1454.37093) Full Text: DOI OpenURL
Meddour, Lotfi; Zeraoulia, Elhadj About the three-dimensional quadratic autonomous system with two quadratic terms equivalent to the Lorenz system. (English) Zbl 1448.93136 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133-143 (2020). MSC: 93C15 93C10 34C28 34C41 PDF BibTeX XML Cite \textit{L. Meddour} and \textit{E. Zeraoulia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133--143 (2020; Zbl 1448.93136) Full Text: Link OpenURL
Yang, Jiaopeng; Liu, Zhengrong A novel simple hyperchaotic system with two coexisting attractors. (English) Zbl 1434.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019). MSC: 34A34 34C28 34C23 37D45 34D45 34D08 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Z. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019; Zbl 1434.34024) Full Text: DOI OpenURL
Huang, Qiujian; Liu, Aimin; Liu, Yongjian Jacobi stability analysis of the Chen system. (English) Zbl 1435.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019). MSC: 34A34 34D99 34C14 34C05 34C28 PDF BibTeX XML Cite \textit{Q. Huang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019; Zbl 1435.34022) Full Text: DOI OpenURL
Maayah, Banan; Bushnaq, Samia; Alsaedi, Ahmed; Momani, Shaher An efficient numerical method for solving chaotic and non-chaotic systems. (English) Zbl 1427.65109 J. Ramanujan Math. Soc. 33, No. 3, 219-231 (2018). MSC: 65L05 65L06 37D45 PDF BibTeX XML Cite \textit{B. Maayah} et al., J. Ramanujan Math. Soc. 33, No. 3, 219--231 (2018; Zbl 1427.65109) Full Text: Link OpenURL
Yakubu, Gulibur Dauda Accurate multistep multi-derivative collocation methods applied to chaotic systems. (English) Zbl 1398.65154 J. Mod. Methods Numer. Math. 9, No. 1-2, 1-15 (2018). MSC: 65L04 65L05 65L06 PDF BibTeX XML Cite \textit{G. D. Yakubu}, J. Mod. Methods Numer. Math. 9, No. 1--2, 1--15 (2018; Zbl 1398.65154) OpenURL
Lăzureanu, Cristian Integrable deformations of three-dimensional chaotic systems. (English) Zbl 1392.34039 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1850066, 7 p. (2018). MSC: 34C20 34A34 34C28 PDF BibTeX XML Cite \textit{C. Lăzureanu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1850066, 7 p. (2018; Zbl 1392.34039) Full Text: DOI OpenURL
Barboza, Ruy On Lorenz and Chen systems. (English) Zbl 1388.34012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850018, 8 p. (2018). MSC: 34A34 34C28 37D45 PDF BibTeX XML Cite \textit{R. Barboza}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850018, 8 p. (2018; Zbl 1388.34012) Full Text: DOI OpenURL
Li, Taiyong; Yang, Minggao; Wu, Jiang; Jing, Xin A novel image encryption algorithm based on a fractional-order hyperchaotic system and DNA computing. (English) Zbl 1380.94028 Complexity 2017, Article ID 9010251, 13 p. (2017). MSC: 94A08 94A60 68P25 PDF BibTeX XML Cite \textit{T. Li} et al., Complexity 2017, Article ID 9010251, 13 p. (2017; Zbl 1380.94028) Full Text: DOI OpenURL
Lăzureanu, Cristian The real-valued Maxwell-Bloch equations with controls: from a Hamilton-Poisson system to a chaotic one. (English) Zbl 1373.34026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 9, Article ID 1750143, 17 p. (2017). MSC: 34A34 34C05 34D20 34C37 34H05 34C28 37J45 PDF BibTeX XML Cite \textit{C. Lăzureanu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 9, Article ID 1750143, 17 p. (2017; Zbl 1373.34026) Full Text: DOI OpenURL
Ren, Hai-Peng; Bai, Chao; Huang, Zhan-Zhan; Grebogi, Celso Secure communication based on hyperchaotic Chen system with time-delay. (English) Zbl 1367.94362 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 5, Article ID 1750076, 15 p. (2017). MSC: 94A62 94A60 34K23 PDF BibTeX XML Cite \textit{H.-P. Ren} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 5, Article ID 1750076, 15 p. (2017; Zbl 1367.94362) Full Text: DOI OpenURL
Zarei, Amin; Tavakoli, Saeed Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system. (English) Zbl 1410.34119 Appl. Math. Comput. 291, 323-339 (2016). MSC: 34C23 37D45 PDF BibTeX XML Cite \textit{A. Zarei} and \textit{S. Tavakoli}, Appl. Math. Comput. 291, 323--339 (2016; Zbl 1410.34119) Full Text: DOI OpenURL
Lozi, René; Pogonin, Vasiliy A.; Pchelintsev, Alexander N. A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities. (English) Zbl 1372.34089 Chaos Solitons Fractals 91, 108-114 (2016). MSC: 34D45 65P20 37D45 65L05 65L70 PDF BibTeX XML Cite \textit{R. Lozi} et al., Chaos Solitons Fractals 91, 108--114 (2016; Zbl 1372.34089) Full Text: DOI HAL OpenURL
Handa, Himesh; Sharma, B. B. Novel adaptive feedback synchronization scheme for a class of chaotic systems with and without parametric uncertainty. (English) Zbl 1354.93076 Chaos Solitons Fractals 86, 50-63 (2016). MSC: 93C40 93B52 34H10 93D05 93A14 PDF BibTeX XML Cite \textit{H. Handa} and \textit{B. B. Sharma}, Chaos Solitons Fractals 86, 50--63 (2016; Zbl 1354.93076) Full Text: DOI OpenURL
Esen, Oğul; Choudhury, Anindya Ghose; Guha, Partha Bi-Hamiltonian structures of 3D chaotic dynamical systems. (English) Zbl 1354.34073 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 13, Article ID 1650215, 11 p. (2016). MSC: 34C28 34A34 37J99 PDF BibTeX XML Cite \textit{O. Esen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 13, Article ID 1650215, 11 p. (2016; Zbl 1354.34073) Full Text: DOI arXiv OpenURL
Kuntanapreeda, Suwat Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach. (English) Zbl 1355.93095 Nonlinear Dyn. 84, No. 4, 2505-2515 (2016). MSC: 93C40 34D06 37D45 34H10 93B52 93D05 PDF BibTeX XML Cite \textit{S. Kuntanapreeda}, Nonlinear Dyn. 84, No. 4, 2505--2515 (2016; Zbl 1355.93095) Full Text: DOI OpenURL
Aqeel, Muhammad; Ahmad, Salman Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system. (English) Zbl 1354.37041 Nonlinear Dyn. 84, No. 2, 755-765 (2016). MSC: 37D45 37G10 34D08 37M25 PDF BibTeX XML Cite \textit{M. Aqeel} and \textit{S. Ahmad}, Nonlinear Dyn. 84, No. 2, 755--765 (2016; Zbl 1354.37041) Full Text: DOI OpenURL
Wang, Zhonglin; Zhou, Leilei; Chen, Zengqiang; Wang, Jiezhi Local bifurcation analysis and topological horseshoe of a 4D hyper-chaotic system. (English) Zbl 1353.37074 Nonlinear Dyn. 83, No. 4, 2055-2066 (2016). MSC: 37D45 34C28 37G10 PDF BibTeX XML Cite \textit{Z. Wang} et al., Nonlinear Dyn. 83, No. 4, 2055--2066 (2016; Zbl 1353.37074) Full Text: DOI OpenURL
Wang, Haijun; Li, Xianyi Some new insights into a known Chen-like system. (English) Zbl 1343.34102 Math. Methods Appl. Sci. 39, No. 7, 1747-1764 (2016). MSC: 34C28 34C45 34C37 34D20 34C05 34A34 34E15 34D08 34C23 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Li}, Math. Methods Appl. Sci. 39, No. 7, 1747--1764 (2016; Zbl 1343.34102) Full Text: DOI OpenURL
Wang, Bin; Cao, Hongbo; Wang, Yuzhu; Zhu, Delan Linear matrix inequality based fuzzy synchronization for fractional order chaos. (English) Zbl 1394.34133 Math. Probl. Eng. 2015, Article ID 128580, 14 p. (2015). MSC: 34H10 93C42 34A07 34A08 34D06 PDF BibTeX XML Cite \textit{B. Wang} et al., Math. Probl. Eng. 2015, Article ID 128580, 14 p. (2015; Zbl 1394.34133) Full Text: DOI OpenURL
Wu, Ranchao; Fang, Tianbao Stability and Hopf bifurcation of a Lorenz-like system. (English) Zbl 1410.34118 Appl. Math. Comput. 262, 335-343 (2015). MSC: 34C23 37G15 37D45 PDF BibTeX XML Cite \textit{R. Wu} and \textit{T. Fang}, Appl. Math. Comput. 262, 335--343 (2015; Zbl 1410.34118) Full Text: DOI OpenURL
Lozi, René; Pchelintsev, Alexander N. A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case. (English) Zbl 1330.37069 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550187, 10 p. (2015). MSC: 37M25 37M05 37D45 65L99 PDF BibTeX XML Cite \textit{R. Lozi} and \textit{A. N. Pchelintsev}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550187, 10 p. (2015; Zbl 1330.37069) Full Text: DOI OpenURL
Li, Hong-Li; Jiang, Yao-Lin; Wang, Zuo-Lei Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control. (English) Zbl 1345.34095 Nonlinear Dyn. 79, No. 2, 919-925 (2015). MSC: 34D06 93C23 93C10 34K45 34K60 34C28 37M05 37N35 PDF BibTeX XML Cite \textit{H.-L. Li} et al., Nonlinear Dyn. 79, No. 2, 919--925 (2015; Zbl 1345.34095) Full Text: DOI OpenURL
Sprott, J. C. New chaotic regimes in the Lorenz and Chen systems. (English) Zbl 1309.34008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 2, Article ID 1550033, 7 p. (2015). MSC: 34A34 34C28 34C14 34D45 37D45 PDF BibTeX XML Cite \textit{J. C. Sprott}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 2, Article ID 1550033, 7 p. (2015; Zbl 1309.34008) Full Text: DOI OpenURL
Banerjee, Amit; Abu-Mahfouz, Issam A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems. (English) Zbl 1348.93081 Chaos Solitons Fractals 58, 65-83 (2014). MSC: 93B30 49M30 PDF BibTeX XML Cite \textit{A. Banerjee} and \textit{I. Abu-Mahfouz}, Chaos Solitons Fractals 58, 65--83 (2014; Zbl 1348.93081) Full Text: DOI OpenURL
Xu, Yuhua; Xie, Chengrong; Xia, Qing A kind of binary scaling function projective lag synchronization of chaotic systems with stochastic perturbation. (English) Zbl 1314.34123 Nonlinear Dyn. 77, No. 3, 891-897 (2014). MSC: 34D06 37D45 34C28 93C40 PDF BibTeX XML Cite \textit{Y. Xu} et al., Nonlinear Dyn. 77, No. 3, 891--897 (2014; Zbl 1314.34123) Full Text: DOI OpenURL
Wang, Haijun; Li, Xianyi More dynamical properties revealed from a 3D Lorenz-like system. (English) Zbl 1302.34016 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 10, Article ID 1450133, 29 p. (2014). MSC: 34A34 34C23 34C37 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Li}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 10, Article ID 1450133, 29 p. (2014; Zbl 1302.34016) Full Text: DOI OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Chen’s attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system. (English) Zbl 1323.37020 Chaos 23, No. 3, 033108, 6 p. (2013). MSC: 37D45 37G10 70K55 70K50 PDF BibTeX XML Cite \textit{A. Algaba} et al., Chaos 23, No. 3, 033108, 6 p. (2013; Zbl 1323.37020) Full Text: DOI OpenURL
Yuan, Jian; Shi, Bao; Ji, Wenqiang Adaptive sliding mode control of a novel class of fractional chaotic systems. (English) Zbl 1291.93169 Adv. Math. Phys. 2013, Article ID 576709, 13 p. (2013). MSC: 93C40 34A08 93B12 34H10 PDF BibTeX XML Cite \textit{J. Yuan} et al., Adv. Math. Phys. 2013, Article ID 576709, 13 p. (2013; Zbl 1291.93169) Full Text: DOI OpenURL
Yuan, Jian; Shi, Bao; Zeng, Xiaoyun; Ji, Wenqiang; Pan, Tetie Sliding mode control of the fractional-order unified chaotic system. (English) Zbl 1291.34021 Abstr. Appl. Anal. 2013, Article ID 397504, 13 p. (2013). MSC: 34A08 93C15 34H10 93B12 PDF BibTeX XML Cite \textit{J. Yuan} et al., Abstr. Appl. Anal. 2013, Article ID 397504, 13 p. (2013; Zbl 1291.34021) Full Text: DOI OpenURL
Chen, Diyi; Zhao, Weili; Sprott, Julien Clinton; Ma, Xiaoyi Application of Takagi-sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. (English) Zbl 1281.34085 Nonlinear Dyn. 73, No. 3, 1495-1505 (2013). MSC: 34D06 34C28 34A08 PDF BibTeX XML Cite \textit{D. Chen} et al., Nonlinear Dyn. 73, No. 3, 1495--1505 (2013; Zbl 1281.34085) Full Text: DOI OpenURL
Zhao, Xinquan; Jiang, Feng; Hu, Junhao Globally exponentially attractive sets and positive invariant sets of three-dimensional autonomous systems with only cross-product nonlinearities. (English) Zbl 1270.34160 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 1, Article ID 1350007, 14 p. (2013). MSC: 34D45 34A34 34C28 PDF BibTeX XML Cite \textit{X. Zhao} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 1, Article ID 1350007, 14 p. (2013; Zbl 1270.34160) Full Text: DOI OpenURL
Wang, Xiong; Chen, Guanrong A gallery of Lorenz-like and Chen-like attractors. (English) Zbl 1270.34142 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 4, Article ID 1330011, 20 p. (2013). MSC: 34C60 34D45 37D45 34C14 PDF BibTeX XML Cite \textit{X. Wang} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 4, Article ID 1330011, 20 p. (2013; Zbl 1270.34142) Full Text: DOI OpenURL
Tee, Loong Soon; Salleh, Zabidin Dynamical analysis of a modified Lorenz system. (English) Zbl 1297.37016 J. Math. 2013, Article ID 820946, 8 p. (2013). MSC: 37D45 37B25 37M05 PDF BibTeX XML Cite \textit{L. S. Tee} and \textit{Z. Salleh}, J. Math. 2013, Article ID 820946, 8 p. (2013; Zbl 1297.37016) Full Text: DOI OpenURL
Li, Hongwei; Wang, Miao Hopf bifurcation analysis in a Lorenz-type system. (English) Zbl 1268.34076 Nonlinear Dyn. 71, No. 1-2, 235-240 (2013). MSC: 34C23 34D08 PDF BibTeX XML Cite \textit{H. Li} and \textit{M. Wang}, Nonlinear Dyn. 71, No. 1--2, 235--240 (2013; Zbl 1268.34076) Full Text: DOI OpenURL
Zhao, Xinquan; Jiang, Feng; Zhang, Zhigang; Hu, Junhao A new series of three-dimensional chaotic systems with cross-product nonlinearities and their switching. (English) Zbl 1266.34075 J. Appl. Math. 2013, Article ID 590421, 14 p. (2013). MSC: 34C28 34D45 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Appl. Math. 2013, Article ID 590421, 14 p. (2013; Zbl 1266.34075) Full Text: DOI OpenURL
Yassen, M. T.; El-Dessoky, M. M.; Saleh, E.; Aly, E. S. On Hopf bifurcation of Liu chaotic system. (English) Zbl 1277.37082 Demonstr. Math. 46, No. 1, 111-122 (2013). MSC: 37G35 37D45 37H20 37G15 PDF BibTeX XML Cite \textit{M. T. Yassen} et al., Demonstr. Math. 46, No. 1, 111--122 (2013; Zbl 1277.37082) Full Text: DOI OpenURL
Chuang, Chun-Fu; Sun, Yeong-Jeu; Wang, Wen-June A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems. (English) Zbl 1319.34103 Chaos 22, No. 4, 043108, 7 p. (2012). MSC: 34D06 34C28 34H05 34C60 PDF BibTeX XML Cite \textit{C.-F. Chuang} et al., Chaos 22, No. 4, 043108, 7 p. (2012; Zbl 1319.34103) Full Text: DOI OpenURL
Bashkirtseva, Irina; Chen, Guanrong; Ryashko, Lev Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. (English) Zbl 1319.34115 Chaos 22, No. 3, 033104, 9 p. (2012). MSC: 34F05 34C60 34C05 34D45 34C28 PDF BibTeX XML Cite \textit{I. Bashkirtseva} et al., Chaos 22, No. 3, 033104, 9 p. (2012; Zbl 1319.34115) Full Text: DOI Link OpenURL
Cheng, Chih-Chiang; Lin, Yan-Si; Wu, Shiue-Wei Design of adaptive sliding mode tracking controllers for chaotic synchronization and application to secure communications. (English) Zbl 1300.93050 J. Franklin Inst. 349, No. 8, 2626-2649 (2012). MSC: 93B12 93C40 34H10 94A62 93D05 PDF BibTeX XML Cite \textit{C.-C. Cheng} et al., J. Franklin Inst. 349, No. 8, 2626--2649 (2012; Zbl 1300.93050) Full Text: DOI OpenURL
He, Xing; Shu, Yonglu; Li, Chuandong; Jin, Huan Nonlinear analysis of a novel three-scroll chaotic system. (English) Zbl 1303.34009 J. Appl. Math. Comput. 39, No. 1-2, 319-332 (2012). MSC: 34A34 34C23 34C37 34C28 34C45 PDF BibTeX XML Cite \textit{X. He} et al., J. Appl. Math. Comput. 39, No. 1--2, 319--332 (2012; Zbl 1303.34009) Full Text: DOI OpenURL
Li, Hongwei Dynamical analysis in a 4D hyperchaotic system. (English) Zbl 1268.34083 Nonlinear Dyn. 70, No. 2, 1327-1334 (2012). MSC: 34C28 34C23 34C20 PDF BibTeX XML Cite \textit{H. Li}, Nonlinear Dyn. 70, No. 2, 1327--1334 (2012; Zbl 1268.34083) Full Text: DOI OpenURL
Curiac, Daniel-Ioan; Volosencu, Constantin Chaotic trajectory design for monitoring an arbitrary number of specified locations using points of interest. (English) Zbl 1264.34087 Math. Probl. Eng. 2012, Article ID 940276, 18 p. (2012). MSC: 34C28 PDF BibTeX XML Cite \textit{D.-I. Curiac} and \textit{C. Volosencu}, Math. Probl. Eng. 2012, Article ID 940276, 18 p. (2012; Zbl 1264.34087) Full Text: DOI OpenURL
Sundarapandian, Vaidyanathan; Pehlivan, I. Analysis, control, synchronization, and circuit design of a novel chaotic system. (English) Zbl 1255.93076 Math. Comput. Modelling 55, No. 7-8, 1904-1915 (2012). MSC: 93C40 34D06 37N35 94C05 PDF BibTeX XML Cite \textit{V. Sundarapandian} and \textit{I. Pehlivan}, Math. Comput. Modelling 55, No. 7--8, 1904--1915 (2012; Zbl 1255.93076) Full Text: DOI OpenURL
Motsa, S. S.; Khan, Y.; Shateyi, S. Application of piecewise successive linearization method for the solutions of the Chen chaotic system. (English) Zbl 1251.65107 J. Appl. Math. 2012, Article ID 258948, 12 p. (2012). MSC: 65L06 34H10 37D45 PDF BibTeX XML Cite \textit{S. S. Motsa} et al., J. Appl. Math. 2012, Article ID 258948, 12 p. (2012; Zbl 1251.65107) Full Text: DOI OpenURL
Bashkirtseva, Irina; Chen, Guanrong; Ryashko, Lev Stochastic equilibria control and chaos suppression for 3D systems via stochastic sensitivity synthesis. (English) Zbl 1245.93135 Commun. Nonlinear Sci. Numer. Simul. 17, No. 8, 3381-3389 (2012). MSC: 93E15 93C10 93C73 93D15 93B50 PDF BibTeX XML Cite \textit{I. Bashkirtseva} et al., Commun. Nonlinear Sci. Numer. Simul. 17, No. 8, 3381--3389 (2012; Zbl 1245.93135) Full Text: DOI OpenURL
Feng, Li; Yinlai, Jin Hopf bifurcation analysis and numerical simulation in a 4D-hyperchaotic system. (English) Zbl 1251.34064 Nonlinear Dyn. 67, No. 4, 2857-2864 (2012). Reviewer: Josef Hainzl (Freiburg) MSC: 34C60 34C23 34C28 34C20 34C05 34D20 PDF BibTeX XML Cite \textit{L. Feng} and \textit{J. Yinlai}, Nonlinear Dyn. 67, No. 4, 2857--2864 (2012; Zbl 1251.34064) Full Text: DOI OpenURL
Liu, Yongjian; Pang, Wei Dynamics of the general Lorenz family. (English) Zbl 1242.37015 Nonlinear Dyn. 67, No. 2, 1595-1611 (2012). MSC: 37C10 34C28 37C29 34C23 37D45 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{W. Pang}, Nonlinear Dyn. 67, No. 2, 1595--1611 (2012; Zbl 1242.37015) Full Text: DOI OpenURL
Mu, Chunlai; Zhang, Fuchen; Shu, Yonglu; Zhou, Shouming On the boundedness of solutions to the Lorenz-like family of chaotic systems. (English) Zbl 1245.34055 Nonlinear Dyn. 67, No. 2, 987-996 (2012). MSC: 34C28 34C45 34C11 34D06 PDF BibTeX XML Cite \textit{C. Mu} et al., Nonlinear Dyn. 67, No. 2, 987--996 (2012; Zbl 1245.34055) Full Text: DOI OpenURL
Wang, Tao; Jia, Nuo Chaos control and hybrid projective synchronization of several new chaotic systems. (English) Zbl 1248.93082 Appl. Math. Comput. 218, No. 13, 7231-7240 (2012). MSC: 93C15 93B52 93C40 37N35 34D06 34H10 PDF BibTeX XML Cite \textit{T. Wang} and \textit{N. Jia}, Appl. Math. Comput. 218, No. 13, 7231--7240 (2012; Zbl 1248.93082) Full Text: DOI OpenURL
Yüzbaşı, Şuayip A numerical scheme for solutions of the Chen system. (English) Zbl 1245.65091 Math. Methods Appl. Sci. 35, No. 8, 885-893 (2012). MSC: 65L05 34A34 34C28 65L60 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı}, Math. Methods Appl. Sci. 35, No. 8, 885--893 (2012; Zbl 1245.65091) Full Text: DOI OpenURL
Ma, Chao; Wang, Xingyuan Hopf bifurcation and topological horseshoe of a novel finance chaotic system. (English) Zbl 1241.91008 Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 721-730 (2012). MSC: 91-08 37N40 37G99 PDF BibTeX XML Cite \textit{C. Ma} and \textit{X. Wang}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 721--730 (2012; Zbl 1241.91008) Full Text: DOI OpenURL
Van Gorder, Robert A. Emergence of chaotic regimes in the generalized Lorenz canonical form: a competitive modes analysis. (English) Zbl 1294.34049 Nonlinear Dyn. 66, No. 1-2, 153-160 (2011). Reviewer: Gheorghe Tigan (Timisoara) MSC: 34C28 34A34 PDF BibTeX XML Cite \textit{R. A. Van Gorder}, Nonlinear Dyn. 66, No. 1--2, 153--160 (2011; Zbl 1294.34049) Full Text: DOI OpenURL
Li, Xianyi; Ou, Qianjun Dynamical properties and simulation of a new Lorenz-like chaotic system. (English) Zbl 1280.37027 Nonlinear Dyn. 65, No. 3, 255-270 (2011). MSC: 37C10 37D45 37C29 PDF BibTeX XML Cite \textit{X. Li} and \textit{Q. Ou}, Nonlinear Dyn. 65, No. 3, 255--270 (2011; Zbl 1280.37027) Full Text: DOI OpenURL
Jia, Nuo; Wang, Tao Chaos control and hybrid projective synchronization for a class of new chaotic systems. (English) Zbl 1236.93073 Comput. Math. Appl. 62, No. 12, 4783-4795 (2011). MSC: 93B52 34H10 37N35 93A13 PDF BibTeX XML Cite \textit{N. Jia} and \textit{T. Wang}, Comput. Math. Appl. 62, No. 12, 4783--4795 (2011; Zbl 1236.93073) Full Text: DOI OpenURL
Morel, C.; Vlad, R.; Morel, J.-Y.; Petreus, D. Generating chaotic attractors on a surface. (English) Zbl 1221.65319 Math. Comput. Simul. 81, No. 11, 2549-2563 (2011). MSC: 65P20 37D45 PDF BibTeX XML Cite \textit{C. Morel} et al., Math. Comput. Simul. 81, No. 11, 2549--2563 (2011; Zbl 1221.65319) Full Text: DOI HAL OpenURL
Zhang, Fuchen; Shu, Yonglu; Yang, Hongliang; Li, Xiaowu Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization. (English) Zbl 1254.70038 Chaos Solitons Fractals 44, No. 1-3, 137-144 (2011). Reviewer: Fuhua Ling (Shenyang) MSC: 70K55 70K20 PDF BibTeX XML Cite \textit{F. Zhang} et al., Chaos Solitons Fractals 44, No. 1--3, 137--144 (2011; Zbl 1254.70038) Full Text: DOI OpenURL
Wang, Tao; Wang, Kejun; Jia, Nuo Chaos control and hybrid projective synchronization of a novel chaotic system. (English) Zbl 1213.34077 Math. Probl. Eng. 2011, Article ID 452671, 13 p. (2011). MSC: 34H10 37D45 PDF BibTeX XML Cite \textit{T. Wang} et al., Math. Probl. Eng. 2011, Article ID 452671, 13 p. (2011; Zbl 1213.34077) Full Text: DOI EuDML OpenURL
Roopaei, Mehdi; Sahraei, Bijan Ranjbar; Lin, Tsung-Chih Adaptive sliding mode control in a novel class of chaotic systems. (English) Zbl 1222.93124 Commun. Nonlinear Sci. Numer. Simul. 15, No. 12, 4158-4170 (2010). MSC: 93C40 34H10 37D45 37N35 93B12 PDF BibTeX XML Cite \textit{M. Roopaei} et al., Commun. Nonlinear Sci. Numer. Simul. 15, No. 12, 4158--4170 (2010; Zbl 1222.93124) Full Text: DOI OpenURL
Loría, Antonio Control of the new 4th-order hyper-chaotic system with one input. (English) Zbl 1221.93226 Commun. Nonlinear Sci. Numer. Simul. 15, No. 6, 1621-1630 (2010). MSC: 93D15 34H10 37N35 PDF BibTeX XML Cite \textit{A. Loría}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 6, 1621--1630 (2010; Zbl 1221.93226) Full Text: DOI OpenURL
Zhang, Kangming; Yang, Qigui Hopf bifurcation analysis in a 4D-hyperchaotic system. (English) Zbl 1211.34049 J. Syst. Sci. Complex. 23, No. 4, 748-758 (2010). MSC: 34C23 34C28 34C05 PDF BibTeX XML Cite \textit{K. Zhang} and \textit{Q. Yang}, J. Syst. Sci. Complex. 23, No. 4, 748--758 (2010; Zbl 1211.34049) Full Text: DOI OpenURL
Wu, Wenjuan; Chen, Zengqiang Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. (English) Zbl 1194.70036 Nonlinear Dyn. 60, No. 4, 615-630 (2010). MSC: 70K50 70K55 PDF BibTeX XML Cite \textit{W. Wu} and \textit{Z. Chen}, Nonlinear Dyn. 60, No. 4, 615--630 (2010; Zbl 1194.70036) Full Text: DOI OpenURL
Liu, Yongjian; Yang, Qigui Dynamics of a new Lorenz-like chaotic system. (English) Zbl 1202.34083 Nonlinear Anal., Real World Appl. 11, No. 4, 2563-2572 (2010). Reviewer: Tingwen Huang (Doha) MSC: 34C28 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Q. Yang}, Nonlinear Anal., Real World Appl. 11, No. 4, 2563--2572 (2010; Zbl 1202.34083) Full Text: DOI OpenURL
Odibat, Zaid M.; Bertelle, Cyrille; Aziz-Alaoui, M. A.; Duchamp, Gérard H. E. A multi-step differential transform method and application to non-chaotic or chaotic systems. (English) Zbl 1189.65170 Comput. Math. Appl. 59, No. 4, 1462-1472 (2010). MSC: 65L99 34C28 37D45 PDF BibTeX XML Cite \textit{Z. M. Odibat} et al., Comput. Math. Appl. 59, No. 4, 1462--1472 (2010; Zbl 1189.65170) Full Text: DOI HAL OpenURL
Wang, Zhen Existence of attractor and control of a 3D differential system. (English) Zbl 1189.70103 Nonlinear Dyn. 60, No. 3, 369-373 (2010). MSC: 70K55 70Q05 70K44 PDF BibTeX XML Cite \textit{Z. Wang}, Nonlinear Dyn. 60, No. 3, 369--373 (2010; Zbl 1189.70103) Full Text: DOI OpenURL
Goh, S. M.; Noorani, M. S. M.; Hashim, I. On solving the chaotic Chen system: A new time marching design for the variational iteration method using Adomian’s polynomial. (English) Zbl 1190.65189 Numer. Algorithms 54, No. 2, 245-260 (2010). MSC: 65P20 37D45 65L06 37M05 PDF BibTeX XML Cite \textit{S. M. Goh} et al., Numer. Algorithms 54, No. 2, 245--260 (2010; Zbl 1190.65189) Full Text: DOI OpenURL
Morel, Cristina; Vlad, Radu; Chauveau, Eric A new technique to generate independent periodic attractors in the state space of nonlinear dynamic systems. (English) Zbl 1183.70054 Nonlinear Dyn. 59, No. 1-2, 45-60 (2010). MSC: 70K55 37N05 PDF BibTeX XML Cite \textit{C. Morel} et al., Nonlinear Dyn. 59, No. 1--2, 45--60 (2010; Zbl 1183.70054) Full Text: DOI HAL OpenURL
Jiang, Bo; Han, Xiujing; Bi, Qinsheng Hopf bifurcation analysis in the \(T\) system. (English) Zbl 1195.34057 Nonlinear Anal., Real World Appl. 11, No. 1, 522-527 (2010). Reviewer: Gheorghe Tigan (Timisoara) MSC: 34C23 34C05 34C20 PDF BibTeX XML Cite \textit{B. Jiang} et al., Nonlinear Anal., Real World Appl. 11, No. 1, 522--527 (2010; Zbl 1195.34057) Full Text: DOI OpenURL
Yu, P.; Liao, X. X.; Xie, S. L.; Fu, Y. L. A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family. (English) Zbl 1221.37047 Commun. Nonlinear Sci. Numer. Simul. 14, No. 7, 2886-2896 (2009). MSC: 37C70 34D45 37D45 PDF BibTeX XML Cite \textit{P. Yu} et al., Commun. Nonlinear Sci. Numer. Simul. 14, No. 7, 2886--2896 (2009; Zbl 1221.37047) Full Text: DOI OpenURL
Alomari, A. K.; Noorani, M. S. M.; Nazar, R. Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system. (English) Zbl 1221.65192 Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 2336-2346 (2009). MSC: 65L99 37N30 PDF BibTeX XML Cite \textit{A. K. Alomari} et al., Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 2336--2346 (2009; Zbl 1221.65192) Full Text: DOI OpenURL
Li, Dequan; Yin, Zhixiang Connecting the Lorenz and Chen systems via nonlinear control. (English) Zbl 1221.93099 Commun. Nonlinear Sci. Numer. Simul. 14, No. 3, 655-667 (2009). MSC: 93C10 37D45 37N35 PDF BibTeX XML Cite \textit{D. Li} and \textit{Z. Yin}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 3, 655--667 (2009; Zbl 1221.93099) Full Text: DOI OpenURL
Al-Sawalha, M. Mossa; Noorani, M. S. M. A numeric-analytic method for approximating the chaotic Chen system. (English) Zbl 1198.65002 Chaos Solitons Fractals 42, No. 3, 1784-1791 (2009). MSC: 65-04 34-04 65L06 37D45 PDF BibTeX XML Cite \textit{M. M. Al-Sawalha} and \textit{M. S. M. Noorani}, Chaos Solitons Fractals 42, No. 3, 1784--1791 (2009; Zbl 1198.65002) Full Text: DOI OpenURL
Shu, Yonglu; Xu, Hongxing; Zhao, Yunhong Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization. (English) Zbl 1198.93152 Chaos Solitons Fractals 42, No. 5, 2852-2857 (2009). MSC: 93D05 34H10 37D45 65L99 PDF BibTeX XML Cite \textit{Y. Shu} et al., Chaos Solitons Fractals 42, No. 5, 2852--2857 (2009; Zbl 1198.93152) Full Text: DOI OpenURL
Huang, Kuifei; Yang, Qigui Stability and Hopf bifurcation analysis of a new system. (English) Zbl 1197.34096 Chaos Solitons Fractals 39, No. 2, 567-578 (2009). MSC: 34D20 34C23 37D45 37G15 PDF BibTeX XML Cite \textit{K. Huang} and \textit{Q. Yang}, Chaos Solitons Fractals 39, No. 2, 567--578 (2009; Zbl 1197.34096) Full Text: DOI OpenURL
Sun, Mei; Jia, Qiang; Tian, Lixin A new four-dimensional energy resources system and its linear feedback control. (English) Zbl 1197.93122 Chaos Solitons Fractals 39, No. 1, 101-108 (2009). MSC: 93C95 PDF BibTeX XML Cite \textit{M. Sun} et al., Chaos Solitons Fractals 39, No. 1, 101--108 (2009; Zbl 1197.93122) Full Text: DOI OpenURL
Chen, Tao; Zhou, Shengfan Synchronization in lattices of coupled non-autonomous Chen system via Lyapunov function. (English) Zbl 1212.34147 J. Shanghai Univ. 13, No. 3, 242-247 (2009). MSC: 34D06 34A33 PDF BibTeX XML Cite \textit{T. Chen} and \textit{S. Zhou}, J. Shanghai Univ. 13, No. 3, 242--247 (2009; Zbl 1212.34147) Full Text: DOI OpenURL
Mahmoud, Gamal M.; Bountis, Tassos; AbdEl-Latif, G. M.; Mahmoud, Emad E. Chaos synchronization of two different chaotic complex Chen and Lü systems. (English) Zbl 1170.70011 Nonlinear Dyn. 55, No. 1-2, 43-53 (2009). MSC: 70K55 70Q05 PDF BibTeX XML Cite \textit{G. M. Mahmoud} et al., Nonlinear Dyn. 55, No. 1--2, 43--53 (2009; Zbl 1170.70011) Full Text: DOI OpenURL
Kuo, Hang-Hong; Hou, Yi-You; Yan, Jun-Juh; Liao, Teh-Lu Reliable synchronization of nonlinear chaotic systems. (English) Zbl 1167.93016 Math. Comput. Simul. 79, No. 5, 1627-1635 (2009). Reviewer: Edwin Engin Yaz (Milwaukee) MSC: 93C10 93D09 93D15 93D05 15A39 PDF BibTeX XML Cite \textit{H.-H. Kuo} et al., Math. Comput. Simul. 79, No. 5, 1627--1635 (2009; Zbl 1167.93016) Full Text: DOI OpenURL
Chowdhury, M. S. H.; Hashim, I. Application of multistage homotopy-perturbation method for the solutions of the Chen system. (English) Zbl 1154.65350 Nonlinear Anal., Real World Appl. 10, No. 1, 381-391 (2009). MSC: 65L99 34A45 PDF BibTeX XML Cite \textit{M. S. H. Chowdhury} and \textit{I. Hashim}, Nonlinear Anal., Real World Appl. 10, No. 1, 381--391 (2009; Zbl 1154.65350) Full Text: DOI OpenURL
Yu, P.; Liao, X. X. On the study of globally exponentially attractive set of a general chaotic system. (English) Zbl 1221.37072 Commun. Nonlinear Sci. Numer. Simul. 13, No. 8, 1495-1507 (2008). MSC: 37D45 34C28 PDF BibTeX XML Cite \textit{P. Yu} and \textit{X. X. Liao}, Commun. Nonlinear Sci. Numer. Simul. 13, No. 8, 1495--1507 (2008; Zbl 1221.37072) Full Text: DOI OpenURL
Wang, Xingyuan; Wu, Xiangjun; He, Yijie; Aniwar, Gulzila Chaos synchronization of Chen system and its application to secure communication. (English) Zbl 1154.37338 Int. J. Mod. Phys. B 22, No. 21, 3709-3720 (2008). MSC: 37D45 94A60 PDF BibTeX XML Cite \textit{X. Wang} et al., Int. J. Mod. Phys. B 22, No. 21, 3709--3720 (2008; Zbl 1154.37338) Full Text: DOI OpenURL
Guo, S. M.; Liu, K. T.; Tsai, J. S. H.; Shieh, L. S. An observer-based tracker for hybrid interval chaotic systems with saturating inputs: the chaos-evolutionary-programming approach. (English) Zbl 1147.93345 Comput. Math. Appl. 55, No. 6, 1225-1249 (2008). MSC: 93C10 37N35 90C59 93B18 93B07 PDF BibTeX XML Cite \textit{S. M. Guo} et al., Comput. Math. Appl. 55, No. 6, 1225--1249 (2008; Zbl 1147.93345) Full Text: DOI OpenURL
Elabbasy, E. M.; El-Dessoky, M. M. Synchronization of van der Pol oscillator and Chen chaotic dynamical system. (English) Zbl 1148.37023 Chaos Solitons Fractals 36, No. 5, 1425-1435 (2008). MSC: 37D45 93C10 93D15 37N20 78A35 PDF BibTeX XML Cite \textit{E. M. Elabbasy} and \textit{M. M. El-Dessoky}, Chaos Solitons Fractals 36, No. 5, 1425--1435 (2008; Zbl 1148.37023) Full Text: DOI OpenURL
Zhou, Xiaobing; Wu, Yue; Li, Yi; Wei, Zhengxi Hopf bifurcation analysis of the Liu system. (English) Zbl 1137.37321 Chaos Solitons Fractals 36, No. 5, 1385-1391 (2008). MSC: 37G05 37C25 34C28 34C25 34C20 PDF BibTeX XML Cite \textit{X. Zhou} et al., Chaos Solitons Fractals 36, No. 5, 1385--1391 (2008; Zbl 1137.37321) Full Text: DOI OpenURL
Li, Tiecheng; Chen, Guanrong; Tang, Yun; Yang, Lijun Hopf bifurcation of the generalized Lorenz canonical form. (English) Zbl 1180.70036 Nonlinear Dyn. 47, No. 4, 367-375 (2007). MSC: 70K50 PDF BibTeX XML Cite \textit{T. Li} et al., Nonlinear Dyn. 47, No. 4, 367--375 (2007; Zbl 1180.70036) Full Text: DOI OpenURL
Liu, Zengrong; Li, Ying; Chen, Guanrong The basin of attraction of the Chen attractor. (English) Zbl 1152.37316 Chaos Solitons Fractals 34, No. 5, 1696-1703 (2007). MSC: 37D45 37B25 PDF BibTeX XML Cite \textit{Z. Liu} et al., Chaos Solitons Fractals 34, No. 5, 1696--1703 (2007; Zbl 1152.37316) Full Text: DOI OpenURL