Wang, Lina; Zhang, Xu Bifurcation and dynamics of the complex Chen systems. (English) Zbl 1534.34025 Discrete Contin. Dyn. Syst., Ser. B 29, No. 3, 1243-1282 (2024). MSC: 34A34 34C28 34C11 34C05 34C23 34D20 34D45 37D45 PDFBibTeX XMLCite \textit{L. Wang} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 29, No. 3, 1243--1282 (2024; Zbl 1534.34025) Full Text: DOI
Zelinka, Ivan; Senkerik, Roman Chaotic attractors of discrete dynamical systems used in the core of evolutionary algorithms: state of art and perspectives. (English) Zbl 1532.37070 J. Difference Equ. Appl. 29, No. 9-12, 1202-1227 (2023). MSC: 37M22 68W50 PDFBibTeX XMLCite \textit{I. Zelinka} and \textit{R. Senkerik}, J. Difference Equ. Appl. 29, No. 9--12, 1202--1227 (2023; Zbl 1532.37070) Full Text: DOI
Liang, Bo; Hu, Chenyang; Tian, Zean; Wang, Qiao; Jian, Canling A 3D chaotic system with multi-transient behavior and its application in image encryption. (English) Zbl 07679931 Physica A 616, Article ID 128624, 17 p. (2023). MSC: 82-XX PDFBibTeX XMLCite \textit{B. Liang} et al., Physica A 616, Article ID 128624, 17 p. (2023; Zbl 07679931) Full Text: DOI
Dali, Ali; Abdelmalek, Samir; Bakdi, Azzeddine; Bettayeb, Maamar A class of PSO-tuned controllers in Lorenz chaotic system. (English) Zbl 07619068 Math. Comput. Simul. 204, 430-449 (2023). MSC: 37N35 37D45 34C28 34H10 34H05 PDFBibTeX XMLCite \textit{A. Dali} et al., Math. Comput. Simul. 204, 430--449 (2023; Zbl 07619068) Full Text: DOI
Hu, Chenyang; Wang, Qiao; Zhang, Xiefu; Tian, Zean; Wu, Xianming A new chaotic system with novel multiple shapes of two-channel attractors. (English) Zbl 1506.37045 Chaos Solitons Fractals 162, Article ID 112454, 11 p. (2022). MSC: 37D45 34C28 34C15 34C60 34D45 34C23 PDFBibTeX XMLCite \textit{C. Hu} et al., Chaos Solitons Fractals 162, Article ID 112454, 11 p. (2022; Zbl 1506.37045) Full Text: DOI
Kavuran, Gürkan When machine learning meets fractional-order chaotic signals: detecting dynamical variations. (English) Zbl 1498.68242 Chaos Solitons Fractals 157, Article ID 111908, 13 p. (2022). MSC: 68T05 34A08 37D45 37M10 68T07 PDFBibTeX XMLCite \textit{G. Kavuran}, Chaos Solitons Fractals 157, Article ID 111908, 13 p. (2022; Zbl 1498.68242) Full Text: DOI
Zhou, Hao; Tang, Sanyi Complex dynamics and sliding bifurcations of the Filippov Lorenz-Chen system. (English) Zbl 1537.34031 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250182, 29 p. (2022). MSC: 34A36 34C23 34C28 34D45 37D45 PDFBibTeX XMLCite \textit{H. Zhou} and \textit{S. Tang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250182, 29 p. (2022; Zbl 1537.34031) Full Text: DOI
Rohila, Rajni; Mittal, R. C. Analysis of chaotic behavior of three-dimensional dynamical systems by a \(B\)-spline differential quadrature algorithm. (English) Zbl 1520.65079 Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022). MSC: 65P10 65D07 PDFBibTeX XMLCite \textit{R. Rohila} and \textit{R. C. Mittal}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022; Zbl 1520.65079) Full Text: DOI
Su, Haipeng; Luo, Runzi; Fu, Jiaojiao; Huang, Meichun Fixed time control and synchronization of a class of uncertain chaotic systems with disturbances via passive control method. (English) Zbl 07529673 Math. Comput. Simul. 198, 474-493 (2022). MSC: 93C40 37D45 34H10 93C73 PDFBibTeX XMLCite \textit{H. Su} et al., Math. Comput. Simul. 198, 474--493 (2022; Zbl 07529673) Full Text: DOI
Ouyang, Ziyi; Jin, Jie; Yu, Fei; Chen, Long; Ding, Lei Fully integrated Chen chaotic oscillation system. (English) Zbl 1490.37047 Discrete Dyn. Nat. Soc. 2022, Article ID 8613090, 7 p. (2022). MSC: 37D45 34C28 PDFBibTeX XMLCite \textit{Z. Ouyang} et al., Discrete Dyn. Nat. Soc. 2022, Article ID 8613090, 7 p. (2022; Zbl 1490.37047) Full Text: DOI OA License
Wang, Xiong; Chen, Guanrong; Clinton Sprott, Julien Chaotic systems with any number and various types of equilibria. (English) Zbl 1506.37049 Wang, Xiong (ed.) et al., Chaotic systems with multistability and hidden attractors. Cham: Springer. Emerg. Complex. Comput. 40, 125-146 (2021). MSC: 37D45 37C75 37C29 34C28 PDFBibTeX XMLCite \textit{X. Wang} et al., Emerg. Complex. Comput. 40, 125--146 (2021; Zbl 1506.37049) Full Text: DOI
Li, You; Zhao, Ming; Geng, Fengjie Dynamical analysis and simulation of a new Lorenz-like chaotic system. (English) Zbl 1512.34027 Math. Probl. Eng. 2021, Article ID 6669956, 18 p. (2021). MSC: 34A34 34C05 PDFBibTeX XMLCite \textit{Y. Li} et al., Math. Probl. Eng. 2021, Article ID 6669956, 18 p. (2021; Zbl 1512.34027) Full Text: DOI
Owolabi, Kolade M. Robust synchronization of chaotic fractional-order systems with shifted Chebyshev spectral collocation method. (English) Zbl 1515.65258 J. Appl. Anal. 27, No. 2, 269-282 (2021). MSC: 65M70 35K57 65L05 65M06 93C10 26A33 35R11 PDFBibTeX XMLCite \textit{K. M. Owolabi}, J. Appl. Anal. 27, No. 2, 269--282 (2021; Zbl 1515.65258) Full Text: DOI
Li, Xianyi; Mirjalol, Umirzakov Modeling and analysis of dynamics for a 3D mixed Lorenz system with a damped term. (English) Zbl 1525.34069 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217-241 (2021). MSC: 34C37 34C23 37D45 PDFBibTeX XMLCite \textit{X. Li} and \textit{U. Mirjalol}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217--241 (2021; Zbl 1525.34069) Full Text: DOI
Suqi, Ma Two-dimensional manifolds of modified Chen system with time delay. (English) Zbl 1476.37047 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2150174, 4 p. (2021). MSC: 37C75 37C79 37M05 37M21 PDFBibTeX XMLCite \textit{M. Suqi}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2150174, 4 p. (2021; Zbl 1476.37047) Full Text: DOI
Ma, Suqi Two-dimensional manifolds of controlled Chen system. (English) Zbl 1467.93151 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150122, 4 p. (2021). MSC: 93C15 34C37 34C25 PDFBibTeX XMLCite \textit{S. Ma}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150122, 4 p. (2021; Zbl 1467.93151) Full Text: DOI
Yin, Chuntao Chaos detection of the Chen system with Caputo-Hadamard fractional derivative. (English) Zbl 1464.34065 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021). MSC: 34C28 34A34 34A08 34D08 37D45 PDFBibTeX XMLCite \textit{C. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021; Zbl 1464.34065) Full Text: DOI
Pchelintsev, Alexander N. An accurate numerical method and algorithm for constructing solutions of chaotic systems. (English) Zbl 1483.65204 J. Appl. Nonlinear Dyn. 9, No. 2, 207-221 (2020). MSC: 65P20 37D45 37M05 PDFBibTeX XMLCite \textit{A. N. Pchelintsev}, J. Appl. Nonlinear Dyn. 9, No. 2, 207--221 (2020; Zbl 1483.65204) Full Text: DOI arXiv
Ouannas, Adel; Azar, Ahmad Taher; Ziar, Toufik On inverse full state hybrid function projective synchronization for continuous-time chaotic dynamical systems with arbitrary dimensions. (English) Zbl 1454.37093 Differ. Equ. Dyn. Syst. 28, No. 4, 1045-1058 (2020). MSC: 37N35 93C10 37D45 34D06 PDFBibTeX XMLCite \textit{A. Ouannas} et al., Differ. Equ. Dyn. Syst. 28, No. 4, 1045--1058 (2020; Zbl 1454.37093) Full Text: DOI
Meddour, Lotfi; Zeraoulia, Elhadj About the three-dimensional quadratic autonomous system with two quadratic terms equivalent to the Lorenz system. (English) Zbl 1448.93136 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133-143 (2020). MSC: 93C15 93C10 34C28 34C41 PDFBibTeX XMLCite \textit{L. Meddour} and \textit{E. Zeraoulia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133--143 (2020; Zbl 1448.93136) Full Text: Link
Yang, Jiaopeng; Liu, Zhengrong A novel simple hyperchaotic system with two coexisting attractors. (English) Zbl 1434.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019). MSC: 34A34 34C28 34C23 37D45 34D45 34D08 PDFBibTeX XMLCite \textit{J. Yang} and \textit{Z. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019; Zbl 1434.34024) Full Text: DOI
Huang, Qiujian; Liu, Aimin; Liu, Yongjian Jacobi stability analysis of the Chen system. (English) Zbl 1435.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019). MSC: 34A34 34D99 34C14 34C05 34C28 PDFBibTeX XMLCite \textit{Q. Huang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019; Zbl 1435.34022) Full Text: DOI
Maayah, Banan; Bushnaq, Samia; Alsaedi, Ahmed; Momani, Shaher An efficient numerical method for solving chaotic and non-chaotic systems. (English) Zbl 1427.65109 J. Ramanujan Math. Soc. 33, No. 3, 219-231 (2018). MSC: 65L05 65L06 37D45 PDFBibTeX XMLCite \textit{B. Maayah} et al., J. Ramanujan Math. Soc. 33, No. 3, 219--231 (2018; Zbl 1427.65109) Full Text: Link
Yakubu, Gulibur Dauda Accurate multistep multi-derivative collocation methods applied to chaotic systems. (English) Zbl 1398.65154 J. Mod. Methods Numer. Math. 9, No. 1-2, 1-15 (2018). MSC: 65L04 65L05 65L06 PDFBibTeX XMLCite \textit{G. D. Yakubu}, J. Mod. Methods Numer. Math. 9, No. 1--2, 1--15 (2018; Zbl 1398.65154)
Lăzureanu, Cristian Integrable deformations of three-dimensional chaotic systems. (English) Zbl 1392.34039 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1850066, 7 p. (2018). MSC: 34C20 34A34 34C28 PDFBibTeX XMLCite \textit{C. Lăzureanu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1850066, 7 p. (2018; Zbl 1392.34039) Full Text: DOI
Barboza, Ruy On Lorenz and Chen systems. (English) Zbl 1388.34012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850018, 8 p. (2018). MSC: 34A34 34C28 37D45 PDFBibTeX XMLCite \textit{R. Barboza}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850018, 8 p. (2018; Zbl 1388.34012) Full Text: DOI
Li, Taiyong; Yang, Minggao; Wu, Jiang; Jing, Xin A novel image encryption algorithm based on a fractional-order hyperchaotic system and DNA computing. (English) Zbl 1380.94028 Complexity 2017, Article ID 9010251, 13 p. (2017). MSC: 94A08 94A60 68P25 PDFBibTeX XMLCite \textit{T. Li} et al., Complexity 2017, Article ID 9010251, 13 p. (2017; Zbl 1380.94028) Full Text: DOI OA License
Lăzureanu, Cristian The real-valued Maxwell-Bloch equations with controls: from a Hamilton-Poisson system to a chaotic one. (English) Zbl 1373.34026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 9, Article ID 1750143, 17 p. (2017). MSC: 34A34 34C05 34D20 34C37 34H05 34C28 37J45 PDFBibTeX XMLCite \textit{C. Lăzureanu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 9, Article ID 1750143, 17 p. (2017; Zbl 1373.34026) Full Text: DOI
Ren, Hai-Peng; Bai, Chao; Huang, Zhan-Zhan; Grebogi, Celso Secure communication based on hyperchaotic Chen system with time-delay. (English) Zbl 1367.94362 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 5, Article ID 1750076, 15 p. (2017). MSC: 94A62 94A60 34K23 PDFBibTeX XMLCite \textit{H.-P. Ren} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 5, Article ID 1750076, 15 p. (2017; Zbl 1367.94362) Full Text: DOI
Zarei, Amin; Tavakoli, Saeed Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system. (English) Zbl 1410.34119 Appl. Math. Comput. 291, 323-339 (2016). MSC: 34C23 37D45 PDFBibTeX XMLCite \textit{A. Zarei} and \textit{S. Tavakoli}, Appl. Math. Comput. 291, 323--339 (2016; Zbl 1410.34119) Full Text: DOI
Lozi, René; Pogonin, Vasiliy A.; Pchelintsev, Alexander N. A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities. (English) Zbl 1372.34089 Chaos Solitons Fractals 91, 108-114 (2016). MSC: 34D45 65P20 37D45 65L05 65L70 PDFBibTeX XMLCite \textit{R. Lozi} et al., Chaos Solitons Fractals 91, 108--114 (2016; Zbl 1372.34089) Full Text: DOI HAL
Handa, Himesh; Sharma, B. B. Novel adaptive feedback synchronization scheme for a class of chaotic systems with and without parametric uncertainty. (English) Zbl 1354.93076 Chaos Solitons Fractals 86, 50-63 (2016). MSC: 93C40 93B52 34H10 93D05 93A14 PDFBibTeX XMLCite \textit{H. Handa} and \textit{B. B. Sharma}, Chaos Solitons Fractals 86, 50--63 (2016; Zbl 1354.93076) Full Text: DOI
Esen, Oğul; Choudhury, Anindya Ghose; Guha, Partha Bi-Hamiltonian structures of 3D chaotic dynamical systems. (English) Zbl 1354.34073 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 13, Article ID 1650215, 11 p. (2016). MSC: 34C28 34A34 37J99 PDFBibTeX XMLCite \textit{O. Esen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 13, Article ID 1650215, 11 p. (2016; Zbl 1354.34073) Full Text: DOI arXiv
Kuntanapreeda, Suwat Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach. (English) Zbl 1355.93095 Nonlinear Dyn. 84, No. 4, 2505-2515 (2016). MSC: 93C40 34D06 37D45 34H10 93B52 93D05 PDFBibTeX XMLCite \textit{S. Kuntanapreeda}, Nonlinear Dyn. 84, No. 4, 2505--2515 (2016; Zbl 1355.93095) Full Text: DOI
Aqeel, Muhammad; Ahmad, Salman Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system. (English) Zbl 1354.37041 Nonlinear Dyn. 84, No. 2, 755-765 (2016). MSC: 37D45 37G10 34D08 37M25 PDFBibTeX XMLCite \textit{M. Aqeel} and \textit{S. Ahmad}, Nonlinear Dyn. 84, No. 2, 755--765 (2016; Zbl 1354.37041) Full Text: DOI
Wang, Zhonglin; Zhou, Leilei; Chen, Zengqiang; Wang, Jiezhi Local bifurcation analysis and topological horseshoe of a 4D hyper-chaotic system. (English) Zbl 1353.37074 Nonlinear Dyn. 83, No. 4, 2055-2066 (2016). MSC: 37D45 34C28 37G10 PDFBibTeX XMLCite \textit{Z. Wang} et al., Nonlinear Dyn. 83, No. 4, 2055--2066 (2016; Zbl 1353.37074) Full Text: DOI
Wang, Haijun; Li, Xianyi Some new insights into a known Chen-like system. (English) Zbl 1343.34102 Math. Methods Appl. Sci. 39, No. 7, 1747-1764 (2016). MSC: 34C28 34C45 34C37 34D20 34C05 34A34 34E15 34D08 34C23 PDFBibTeX XMLCite \textit{H. Wang} and \textit{X. Li}, Math. Methods Appl. Sci. 39, No. 7, 1747--1764 (2016; Zbl 1343.34102) Full Text: DOI
Wang, Bin; Cao, Hongbo; Wang, Yuzhu; Zhu, Delan Linear matrix inequality based fuzzy synchronization for fractional order chaos. (English) Zbl 1394.34133 Math. Probl. Eng. 2015, Article ID 128580, 14 p. (2015). MSC: 34H10 93C42 34A07 34A08 34D06 PDFBibTeX XMLCite \textit{B. Wang} et al., Math. Probl. Eng. 2015, Article ID 128580, 14 p. (2015; Zbl 1394.34133) Full Text: DOI
Wu, Ranchao; Fang, Tianbao Stability and Hopf bifurcation of a Lorenz-like system. (English) Zbl 1410.34118 Appl. Math. Comput. 262, 335-343 (2015). MSC: 34C23 37G15 37D45 PDFBibTeX XMLCite \textit{R. Wu} and \textit{T. Fang}, Appl. Math. Comput. 262, 335--343 (2015; Zbl 1410.34118) Full Text: DOI
Lozi, René; Pchelintsev, Alexander N. A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case. (English) Zbl 1330.37069 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550187, 10 p. (2015). MSC: 37M25 37M05 37D45 65L99 PDFBibTeX XMLCite \textit{R. Lozi} and \textit{A. N. Pchelintsev}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550187, 10 p. (2015; Zbl 1330.37069) Full Text: DOI
Li, Hong-Li; Jiang, Yao-Lin; Wang, Zuo-Lei Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control. (English) Zbl 1345.34095 Nonlinear Dyn. 79, No. 2, 919-925 (2015). MSC: 34D06 93C23 93C10 34K45 34K60 34C28 37M05 37N35 PDFBibTeX XMLCite \textit{H.-L. Li} et al., Nonlinear Dyn. 79, No. 2, 919--925 (2015; Zbl 1345.34095) Full Text: DOI
Sprott, J. C. New chaotic regimes in the Lorenz and Chen systems. (English) Zbl 1309.34008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 2, Article ID 1550033, 7 p. (2015). MSC: 34A34 34C28 34C14 34D45 37D45 PDFBibTeX XMLCite \textit{J. C. Sprott}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 2, Article ID 1550033, 7 p. (2015; Zbl 1309.34008) Full Text: DOI
Chen, Diyi; Zhang, Runfan; Liu, Xinzhi; Ma, Xiaoyi Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. (English) Zbl 1440.34058 Commun. Nonlinear Sci. Numer. Simul. 19, No. 12, 4105-4121 (2014). MSC: 34D20 34A08 34D06 93C42 PDFBibTeX XMLCite \textit{D. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 19, No. 12, 4105--4121 (2014; Zbl 1440.34058) Full Text: DOI
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Centers on center manifolds in the Lorenz, Chen and Lü systems. (English) Zbl 1457.34061 Commun. Nonlinear Sci. Numer. Simul. 19, No. 4, 772-775 (2014). MSC: 34C23 PDFBibTeX XMLCite \textit{A. Algaba} et al., Commun. Nonlinear Sci. Numer. Simul. 19, No. 4, 772--775 (2014; Zbl 1457.34061) Full Text: DOI
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comment on “A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family”. (English) Zbl 1470.37040 Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 758-761 (2014). MSC: 37C70 34D45 37D45 PDFBibTeX XMLCite \textit{A. Algaba} et al., Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 758--761 (2014; Zbl 1470.37040) Full Text: DOI
Banerjee, Amit; Abu-Mahfouz, Issam A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems. (English) Zbl 1348.93081 Chaos Solitons Fractals 58, 65-83 (2014). MSC: 93B30 49M30 PDFBibTeX XMLCite \textit{A. Banerjee} and \textit{I. Abu-Mahfouz}, Chaos Solitons Fractals 58, 65--83 (2014; Zbl 1348.93081) Full Text: DOI
Wang, Xiong; Chen, Guanrong Generating Lorenz-like and Chen-like attractors from a simple algebraic structure. (English) Zbl 1342.37038 Sci. China, Inf. Sci. 57, No. 7, Article ID 072201, 7 p. (2014). MSC: 37D45 34C28 34C14 PDFBibTeX XMLCite \textit{X. Wang} and \textit{G. Chen}, Sci. China, Inf. Sci. 57, No. 7, Article ID 072201, 7 p. (2014; Zbl 1342.37038) Full Text: DOI Link
Xu, Yuhua; Xie, Chengrong; Xia, Qing A kind of binary scaling function projective lag synchronization of chaotic systems with stochastic perturbation. (English) Zbl 1314.34123 Nonlinear Dyn. 77, No. 3, 891-897 (2014). MSC: 34D06 37D45 34C28 93C40 PDFBibTeX XMLCite \textit{Y. Xu} et al., Nonlinear Dyn. 77, No. 3, 891--897 (2014; Zbl 1314.34123) Full Text: DOI
Wang, Haijun; Li, Xianyi More dynamical properties revealed from a 3D Lorenz-like system. (English) Zbl 1302.34016 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 10, Article ID 1450133, 29 p. (2014). MSC: 34A34 34C23 34C37 PDFBibTeX XMLCite \textit{H. Wang} and \textit{X. Li}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 10, Article ID 1450133, 29 p. (2014; Zbl 1302.34016) Full Text: DOI
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Chen’s attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system. (English) Zbl 1323.37020 Chaos 23, No. 3, 033108, 6 p. (2013). MSC: 37D45 37G10 70K55 70K50 PDFBibTeX XMLCite \textit{A. Algaba} et al., Chaos 23, No. 3, 033108, 6 p. (2013; Zbl 1323.37020) Full Text: DOI
Yuan, Jian; Shi, Bao; Ji, Wenqiang Adaptive sliding mode control of a novel class of fractional chaotic systems. (English) Zbl 1291.93169 Adv. Math. Phys. 2013, Article ID 576709, 13 p. (2013). MSC: 93C40 34A08 93B12 34H10 PDFBibTeX XMLCite \textit{J. Yuan} et al., Adv. Math. Phys. 2013, Article ID 576709, 13 p. (2013; Zbl 1291.93169) Full Text: DOI OA License
Yuan, Jian; Shi, Bao; Zeng, Xiaoyun; Ji, Wenqiang; Pan, Tetie Sliding mode control of the fractional-order unified chaotic system. (English) Zbl 1291.34021 Abstr. Appl. Anal. 2013, Article ID 397504, 13 p. (2013). MSC: 34A08 93C15 34H10 93B12 PDFBibTeX XMLCite \textit{J. Yuan} et al., Abstr. Appl. Anal. 2013, Article ID 397504, 13 p. (2013; Zbl 1291.34021) Full Text: DOI OA License
Chen, Diyi; Zhao, Weili; Sprott, Julien Clinton; Ma, Xiaoyi Application of Takagi-sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. (English) Zbl 1281.34085 Nonlinear Dyn. 73, No. 3, 1495-1505 (2013). MSC: 34D06 34C28 34A08 PDFBibTeX XMLCite \textit{D. Chen} et al., Nonlinear Dyn. 73, No. 3, 1495--1505 (2013; Zbl 1281.34085) Full Text: DOI
Zhao, Xinquan; Jiang, Feng; Hu, Junhao Globally exponentially attractive sets and positive invariant sets of three-dimensional autonomous systems with only cross-product nonlinearities. (English) Zbl 1270.34160 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 1, Article ID 1350007, 14 p. (2013). MSC: 34D45 34A34 34C28 PDFBibTeX XMLCite \textit{X. Zhao} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 1, Article ID 1350007, 14 p. (2013; Zbl 1270.34160) Full Text: DOI
Wang, Xiong; Chen, Guanrong A gallery of Lorenz-like and Chen-like attractors. (English) Zbl 1270.34142 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 4, Article ID 1330011, 20 p. (2013). MSC: 34C60 34D45 37D45 34C14 PDFBibTeX XMLCite \textit{X. Wang} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 4, Article ID 1330011, 20 p. (2013; Zbl 1270.34142) Full Text: DOI
Tee, Loong Soon; Salleh, Zabidin Dynamical analysis of a modified Lorenz system. (English) Zbl 1297.37016 J. Math. 2013, Article ID 820946, 8 p. (2013). MSC: 37D45 37B25 37M05 PDFBibTeX XMLCite \textit{L. S. Tee} and \textit{Z. Salleh}, J. Math. 2013, Article ID 820946, 8 p. (2013; Zbl 1297.37016) Full Text: DOI OA License
Li, Hongwei; Wang, Miao Hopf bifurcation analysis in a Lorenz-type system. (English) Zbl 1268.34076 Nonlinear Dyn. 71, No. 1-2, 235-240 (2013). MSC: 34C23 34D08 PDFBibTeX XMLCite \textit{H. Li} and \textit{M. Wang}, Nonlinear Dyn. 71, No. 1--2, 235--240 (2013; Zbl 1268.34076) Full Text: DOI
Zhao, Xinquan; Jiang, Feng; Zhang, Zhigang; Hu, Junhao A new series of three-dimensional chaotic systems with cross-product nonlinearities and their switching. (English) Zbl 1266.34075 J. Appl. Math. 2013, Article ID 590421, 14 p. (2013). MSC: 34C28 34D45 PDFBibTeX XMLCite \textit{X. Zhao} et al., J. Appl. Math. 2013, Article ID 590421, 14 p. (2013; Zbl 1266.34075) Full Text: DOI OA License
Yassen, M. T.; El-Dessoky, M. M.; Saleh, E.; Aly, E. S. On Hopf bifurcation of Liu chaotic system. (English) Zbl 1277.37082 Demonstr. Math. 46, No. 1, 111-122 (2013). MSC: 37G35 37D45 37H20 37G15 PDFBibTeX XMLCite \textit{M. T. Yassen} et al., Demonstr. Math. 46, No. 1, 111--122 (2013; Zbl 1277.37082) Full Text: DOI OA License
Chuang, Chun-Fu; Sun, Yeong-Jeu; Wang, Wen-June A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems. (English) Zbl 1319.34103 Chaos 22, No. 4, 043108, 7 p. (2012). MSC: 34D06 34C28 34H05 34C60 PDFBibTeX XMLCite \textit{C.-F. Chuang} et al., Chaos 22, No. 4, 043108, 7 p. (2012; Zbl 1319.34103) Full Text: DOI
Bashkirtseva, Irina; Chen, Guanrong; Ryashko, Lev Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. (English) Zbl 1319.34115 Chaos 22, No. 3, 033104, 9 p. (2012). MSC: 34F05 34C60 34C05 34D45 34C28 PDFBibTeX XMLCite \textit{I. Bashkirtseva} et al., Chaos 22, No. 3, 033104, 9 p. (2012; Zbl 1319.34115) Full Text: DOI Link
Cheng, Chih-Chiang; Lin, Yan-Si; Wu, Shiue-Wei Design of adaptive sliding mode tracking controllers for chaotic synchronization and application to secure communications. (English) Zbl 1300.93050 J. Franklin Inst. 349, No. 8, 2626-2649 (2012). MSC: 93B12 93C40 34H10 94A62 93D05 PDFBibTeX XMLCite \textit{C.-C. Cheng} et al., J. Franklin Inst. 349, No. 8, 2626--2649 (2012; Zbl 1300.93050) Full Text: DOI
He, Xing; Shu, Yonglu; Li, Chuandong; Jin, Huan Nonlinear analysis of a novel three-scroll chaotic system. (English) Zbl 1303.34009 J. Appl. Math. Comput. 39, No. 1-2, 319-332 (2012). MSC: 34A34 34C23 34C37 34C28 34C45 PDFBibTeX XMLCite \textit{X. He} et al., J. Appl. Math. Comput. 39, No. 1--2, 319--332 (2012; Zbl 1303.34009) Full Text: DOI
Li, Hongwei Dynamical analysis in a 4D hyperchaotic system. (English) Zbl 1268.34083 Nonlinear Dyn. 70, No. 2, 1327-1334 (2012). MSC: 34C28 34C23 34C20 PDFBibTeX XMLCite \textit{H. Li}, Nonlinear Dyn. 70, No. 2, 1327--1334 (2012; Zbl 1268.34083) Full Text: DOI
Curiac, Daniel-Ioan; Volosencu, Constantin Chaotic trajectory design for monitoring an arbitrary number of specified locations using points of interest. (English) Zbl 1264.34087 Math. Probl. Eng. 2012, Article ID 940276, 18 p. (2012). MSC: 34C28 PDFBibTeX XMLCite \textit{D.-I. Curiac} and \textit{C. Volosencu}, Math. Probl. Eng. 2012, Article ID 940276, 18 p. (2012; Zbl 1264.34087) Full Text: DOI
Sundarapandian, Vaidyanathan; Pehlivan, I. Analysis, control, synchronization, and circuit design of a novel chaotic system. (English) Zbl 1255.93076 Math. Comput. Modelling 55, No. 7-8, 1904-1915 (2012). MSC: 93C40 34D06 37N35 94C05 PDFBibTeX XMLCite \textit{V. Sundarapandian} and \textit{I. Pehlivan}, Math. Comput. Modelling 55, No. 7--8, 1904--1915 (2012; Zbl 1255.93076) Full Text: DOI
Motsa, S. S.; Khan, Y.; Shateyi, S. Application of piecewise successive linearization method for the solutions of the Chen chaotic system. (English) Zbl 1251.65107 J. Appl. Math. 2012, Article ID 258948, 12 p. (2012). MSC: 65L06 34H10 37D45 PDFBibTeX XMLCite \textit{S. S. Motsa} et al., J. Appl. Math. 2012, Article ID 258948, 12 p. (2012; Zbl 1251.65107) Full Text: DOI OA License
Bashkirtseva, Irina; Chen, Guanrong; Ryashko, Lev Stochastic equilibria control and chaos suppression for 3D systems via stochastic sensitivity synthesis. (English) Zbl 1245.93135 Commun. Nonlinear Sci. Numer. Simul. 17, No. 8, 3381-3389 (2012). MSC: 93E15 93C10 93C73 93D15 93B50 PDFBibTeX XMLCite \textit{I. Bashkirtseva} et al., Commun. Nonlinear Sci. Numer. Simul. 17, No. 8, 3381--3389 (2012; Zbl 1245.93135) Full Text: DOI
Feng, Li; Yinlai, Jin Hopf bifurcation analysis and numerical simulation in a 4D-hyperchaotic system. (English) Zbl 1251.34064 Nonlinear Dyn. 67, No. 4, 2857-2864 (2012). Reviewer: Josef Hainzl (Freiburg) MSC: 34C60 34C23 34C28 34C20 34C05 34D20 PDFBibTeX XMLCite \textit{L. Feng} and \textit{J. Yinlai}, Nonlinear Dyn. 67, No. 4, 2857--2864 (2012; Zbl 1251.34064) Full Text: DOI
Liu, Yongjian; Pang, Wei Dynamics of the general Lorenz family. (English) Zbl 1242.37015 Nonlinear Dyn. 67, No. 2, 1595-1611 (2012). MSC: 37C10 34C28 37C29 34C23 37D45 PDFBibTeX XMLCite \textit{Y. Liu} and \textit{W. Pang}, Nonlinear Dyn. 67, No. 2, 1595--1611 (2012; Zbl 1242.37015) Full Text: DOI
Mu, Chunlai; Zhang, Fuchen; Shu, Yonglu; Zhou, Shouming On the boundedness of solutions to the Lorenz-like family of chaotic systems. (English) Zbl 1245.34055 Nonlinear Dyn. 67, No. 2, 987-996 (2012). MSC: 34C28 34C45 34C11 34D06 PDFBibTeX XMLCite \textit{C. Mu} et al., Nonlinear Dyn. 67, No. 2, 987--996 (2012; Zbl 1245.34055) Full Text: DOI
Wang, Tao; Jia, Nuo Chaos control and hybrid projective synchronization of several new chaotic systems. (English) Zbl 1248.93082 Appl. Math. Comput. 218, No. 13, 7231-7240 (2012). MSC: 93C15 93B52 93C40 37N35 34D06 34H10 PDFBibTeX XMLCite \textit{T. Wang} and \textit{N. Jia}, Appl. Math. Comput. 218, No. 13, 7231--7240 (2012; Zbl 1248.93082) Full Text: DOI
Yüzbaşı, Şuayip A numerical scheme for solutions of the Chen system. (English) Zbl 1245.65091 Math. Methods Appl. Sci. 35, No. 8, 885-893 (2012). MSC: 65L05 34A34 34C28 65L60 PDFBibTeX XMLCite \textit{Ş. Yüzbaşı}, Math. Methods Appl. Sci. 35, No. 8, 885--893 (2012; Zbl 1245.65091) Full Text: DOI
Ma, Chao; Wang, Xingyuan Hopf bifurcation and topological horseshoe of a novel finance chaotic system. (English) Zbl 1241.91008 Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 721-730 (2012). MSC: 91-08 37N40 37G99 PDFBibTeX XMLCite \textit{C. Ma} and \textit{X. Wang}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 721--730 (2012; Zbl 1241.91008) Full Text: DOI
Van Gorder, Robert A. Emergence of chaotic regimes in the generalized Lorenz canonical form: a competitive modes analysis. (English) Zbl 1294.34049 Nonlinear Dyn. 66, No. 1-2, 153-160 (2011). Reviewer: Gheorghe Tigan (Timisoara) MSC: 34C28 34A34 PDFBibTeX XMLCite \textit{R. A. Van Gorder}, Nonlinear Dyn. 66, No. 1--2, 153--160 (2011; Zbl 1294.34049) Full Text: DOI
Li, Xianyi; Ou, Qianjun Dynamical properties and simulation of a new Lorenz-like chaotic system. (English) Zbl 1280.37027 Nonlinear Dyn. 65, No. 3, 255-270 (2011). MSC: 37C10 37D45 37C29 PDFBibTeX XMLCite \textit{X. Li} and \textit{Q. Ou}, Nonlinear Dyn. 65, No. 3, 255--270 (2011; Zbl 1280.37027) Full Text: DOI
Jia, Nuo; Wang, Tao Chaos control and hybrid projective synchronization for a class of new chaotic systems. (English) Zbl 1236.93073 Comput. Math. Appl. 62, No. 12, 4783-4795 (2011). MSC: 93B52 34H10 37N35 93A13 PDFBibTeX XMLCite \textit{N. Jia} and \textit{T. Wang}, Comput. Math. Appl. 62, No. 12, 4783--4795 (2011; Zbl 1236.93073) Full Text: DOI
Morel, C.; Vlad, R.; Morel, J.-Y.; Petreus, D. Generating chaotic attractors on a surface. (English) Zbl 1221.65319 Math. Comput. Simul. 81, No. 11, 2549-2563 (2011). MSC: 65P20 37D45 PDFBibTeX XMLCite \textit{C. Morel} et al., Math. Comput. Simul. 81, No. 11, 2549--2563 (2011; Zbl 1221.65319) Full Text: DOI HAL
Zhang, Fuchen; Shu, Yonglu; Yang, Hongliang; Li, Xiaowu Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization. (English) Zbl 1254.70038 Chaos Solitons Fractals 44, No. 1-3, 137-144 (2011). Reviewer: Fuhua Ling (Shenyang) MSC: 70K55 70K20 PDFBibTeX XMLCite \textit{F. Zhang} et al., Chaos Solitons Fractals 44, No. 1--3, 137--144 (2011; Zbl 1254.70038) Full Text: DOI
Wang, Tao; Wang, Kejun; Jia, Nuo Chaos control and hybrid projective synchronization of a novel chaotic system. (English) Zbl 1213.34077 Math. Probl. Eng. 2011, Article ID 452671, 13 p. (2011). MSC: 34H10 37D45 PDFBibTeX XMLCite \textit{T. Wang} et al., Math. Probl. Eng. 2011, Article ID 452671, 13 p. (2011; Zbl 1213.34077) Full Text: DOI EuDML
Roopaei, Mehdi; Sahraei, Bijan Ranjbar; Lin, Tsung-Chih Adaptive sliding mode control in a novel class of chaotic systems. (English) Zbl 1222.93124 Commun. Nonlinear Sci. Numer. Simul. 15, No. 12, 4158-4170 (2010). MSC: 93C40 34H10 37D45 37N35 93B12 PDFBibTeX XMLCite \textit{M. Roopaei} et al., Commun. Nonlinear Sci. Numer. Simul. 15, No. 12, 4158--4170 (2010; Zbl 1222.93124) Full Text: DOI
Loría, Antonio Control of the new 4th-order hyper-chaotic system with one input. (English) Zbl 1221.93226 Commun. Nonlinear Sci. Numer. Simul. 15, No. 6, 1621-1630 (2010). MSC: 93D15 34H10 37N35 PDFBibTeX XMLCite \textit{A. Loría}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 6, 1621--1630 (2010; Zbl 1221.93226) Full Text: DOI Link
Zhang, Kangming; Yang, Qigui Hopf bifurcation analysis in a 4D-hyperchaotic system. (English) Zbl 1211.34049 J. Syst. Sci. Complex. 23, No. 4, 748-758 (2010). MSC: 34C23 34C28 34C05 PDFBibTeX XMLCite \textit{K. Zhang} and \textit{Q. Yang}, J. Syst. Sci. Complex. 23, No. 4, 748--758 (2010; Zbl 1211.34049) Full Text: DOI
Wu, Wenjuan; Chen, Zengqiang Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. (English) Zbl 1194.70036 Nonlinear Dyn. 60, No. 4, 615-630 (2010). MSC: 70K50 70K55 PDFBibTeX XMLCite \textit{W. Wu} and \textit{Z. Chen}, Nonlinear Dyn. 60, No. 4, 615--630 (2010; Zbl 1194.70036) Full Text: DOI
Liu, Yongjian; Yang, Qigui Dynamics of a new Lorenz-like chaotic system. (English) Zbl 1202.34083 Nonlinear Anal., Real World Appl. 11, No. 4, 2563-2572 (2010). Reviewer: Tingwen Huang (Doha) MSC: 34C28 PDFBibTeX XMLCite \textit{Y. Liu} and \textit{Q. Yang}, Nonlinear Anal., Real World Appl. 11, No. 4, 2563--2572 (2010; Zbl 1202.34083) Full Text: DOI
Odibat, Zaid M.; Bertelle, Cyrille; Aziz-Alaoui, M. A.; Duchamp, Gérard H. E. A multi-step differential transform method and application to non-chaotic or chaotic systems. (English) Zbl 1189.65170 Comput. Math. Appl. 59, No. 4, 1462-1472 (2010). MSC: 65L99 34C28 37D45 PDFBibTeX XMLCite \textit{Z. M. Odibat} et al., Comput. Math. Appl. 59, No. 4, 1462--1472 (2010; Zbl 1189.65170) Full Text: DOI HAL
Wang, Zhen Existence of attractor and control of a 3D differential system. (English) Zbl 1189.70103 Nonlinear Dyn. 60, No. 3, 369-373 (2010). MSC: 70K55 70Q05 70K44 PDFBibTeX XMLCite \textit{Z. Wang}, Nonlinear Dyn. 60, No. 3, 369--373 (2010; Zbl 1189.70103) Full Text: DOI
Goh, S. M.; Noorani, M. S. M.; Hashim, I. On solving the chaotic Chen system: A new time marching design for the variational iteration method using Adomian’s polynomial. (English) Zbl 1190.65189 Numer. Algorithms 54, No. 2, 245-260 (2010). MSC: 65P20 37D45 65L06 37M05 PDFBibTeX XMLCite \textit{S. M. Goh} et al., Numer. Algorithms 54, No. 2, 245--260 (2010; Zbl 1190.65189) Full Text: DOI
Morel, Cristina; Vlad, Radu; Chauveau, Eric A new technique to generate independent periodic attractors in the state space of nonlinear dynamic systems. (English) Zbl 1183.70054 Nonlinear Dyn. 59, No. 1-2, 45-60 (2010). MSC: 70K55 37N05 PDFBibTeX XMLCite \textit{C. Morel} et al., Nonlinear Dyn. 59, No. 1--2, 45--60 (2010; Zbl 1183.70054) Full Text: DOI HAL
Jiang, Bo; Han, Xiujing; Bi, Qinsheng Hopf bifurcation analysis in the \(T\) system. (English) Zbl 1195.34057 Nonlinear Anal., Real World Appl. 11, No. 1, 522-527 (2010). Reviewer: Gheorghe Tigan (Timisoara) MSC: 34C23 34C05 34C20 PDFBibTeX XMLCite \textit{B. Jiang} et al., Nonlinear Anal., Real World Appl. 11, No. 1, 522--527 (2010; Zbl 1195.34057) Full Text: DOI
Dong, Gaogao; Zheng, Song; Tian, Lixin; Du, Ruijin; Sun, Mei; Shi, Zhiyan The analysis of a novel 3-D autonomous system and circuit implementation. (English) Zbl 1234.37029 Phys. Lett., A 373, No. 46, 4227-4238 (2009). MSC: 37D45 37D25 37M25 93A05 PDFBibTeX XMLCite \textit{G. Dong} et al., Phys. Lett., A 373, No. 46, 4227--4238 (2009; Zbl 1234.37029) Full Text: DOI
Munmuangsaen, Buncha; Srisuchinwong, Banlue A new five-term simple chaotic attractor. (English) Zbl 1234.37030 Phys. Lett., A 373, No. 44, 4038-4043 (2009). MSC: 37D45 37J20 37M05 68U20 PDFBibTeX XMLCite \textit{B. Munmuangsaen} and \textit{B. Srisuchinwong}, Phys. Lett., A 373, No. 44, 4038--4043 (2009; Zbl 1234.37030) Full Text: DOI
Dong, Gaogao; Du, Ruijin; Tian, Lixin; Jia, Qiang A novel 3D autonomous system with different multilayer chaotic attractors. (English) Zbl 1234.37028 Phys. Lett., A 373, No. 42, 3838-3845 (2009). MSC: 37D45 37J35 37L30 28A80 37J20 PDFBibTeX XMLCite \textit{G. Dong} et al., Phys. Lett., A 373, No. 42, 3838--3845 (2009; Zbl 1234.37028) Full Text: DOI
Kuntanapreeda, Suwat Chaos synchronization of unified chaotic systems via LMI. (English) Zbl 1233.93047 Phys. Lett., A 373, No. 32, 2837-2840 (2009). MSC: 93B52 93C05 34H10 34C28 34D06 15A39 PDFBibTeX XMLCite \textit{S. Kuntanapreeda}, Phys. Lett., A 373, No. 32, 2837--2840 (2009; Zbl 1233.93047) Full Text: DOI
Yu, P.; Liao, X. X.; Xie, S. L.; Fu, Y. L. A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family. (English) Zbl 1221.37047 Commun. Nonlinear Sci. Numer. Simul. 14, No. 7, 2886-2896 (2009). MSC: 37C70 34D45 37D45 PDFBibTeX XMLCite \textit{P. Yu} et al., Commun. Nonlinear Sci. Numer. Simul. 14, No. 7, 2886--2896 (2009; Zbl 1221.37047) Full Text: DOI
Alomari, A. K.; Noorani, M. S. M.; Nazar, R. Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system. (English) Zbl 1221.65192 Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 2336-2346 (2009). MSC: 65L99 37N30 PDFBibTeX XMLCite \textit{A. K. Alomari} et al., Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 2336--2346 (2009; Zbl 1221.65192) Full Text: DOI
Li, Dequan; Yin, Zhixiang Connecting the Lorenz and Chen systems via nonlinear control. (English) Zbl 1221.93099 Commun. Nonlinear Sci. Numer. Simul. 14, No. 3, 655-667 (2009). MSC: 93C10 37D45 37N35 PDFBibTeX XMLCite \textit{D. Li} and \textit{Z. Yin}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 3, 655--667 (2009; Zbl 1221.93099) Full Text: DOI
Al-Sawalha, M. Mossa; Noorani, M. S. M. A numeric-analytic method for approximating the chaotic Chen system. (English) Zbl 1198.65002 Chaos Solitons Fractals 42, No. 3, 1784-1791 (2009). MSC: 65-04 34-04 65L06 37D45 PDFBibTeX XMLCite \textit{M. M. Al-Sawalha} and \textit{M. S. M. Noorani}, Chaos Solitons Fractals 42, No. 3, 1784--1791 (2009; Zbl 1198.65002) Full Text: DOI
Shu, Yonglu; Xu, Hongxing; Zhao, Yunhong Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization. (English) Zbl 1198.93152 Chaos Solitons Fractals 42, No. 5, 2852-2857 (2009). MSC: 93D05 34H10 37D45 65L99 PDFBibTeX XMLCite \textit{Y. Shu} et al., Chaos Solitons Fractals 42, No. 5, 2852--2857 (2009; Zbl 1198.93152) Full Text: DOI
Xiong, Xiaohua; Wang, Junwei Conjugate Lorenz-type chaotic attractors. (English) Zbl 1197.37047 Chaos Solitons Fractals 40, No. 2, 923-929 (2009). MSC: 37D45 PDFBibTeX XMLCite \textit{X. Xiong} and \textit{J. Wang}, Chaos Solitons Fractals 40, No. 2, 923--929 (2009; Zbl 1197.37047) Full Text: DOI