×

Product ordered Hausdorff continuous \(\mathbb{R}^n\)-interval functions. (English) Zbl 1503.46036

Summary: Vector-valued Sendov and Hausdorff continuity with intervals from a codomain of real Euclidean vector spaces isomorphic to \(\mathbb{R}^n\) (including the separable real Hilbert space case) are constructed using product orders. This is a specialization of van der Walt’s vector-valued Hausdorff continuity. The Dedekind order completion of continuous functions under product orders follows. Product ordered Sendov continuous functions pass the same property on to their codomain components, and in finite dimensions this is an equivalence. Hausdorff continuity behaves similarly. New ways to transform interval functions and Sendov and Hausdorff continuous functions using bounded linear operators are defined. An interpretation of Hausdorff continuity that is essentially basis independent results: Hausdorff continuity belongs basis independently to finite Euclidean space, and therefore to multivariate real analysis. Infinite dimensional real separable Hilbert space is also considered, with interesting results relevant to the study of Hilbert space.

MSC:

46E40 Spaces of vector- and operator-valued functions
46B42 Banach lattices
46A40 Ordered topological linear spaces, vector lattices
65G99 Error analysis and interval analysis
Full Text: DOI

References:

[1] Abramovich, Y.; Aliprantis, C., An invitation to operator theory (2002), Rhode Island: American Mathematical Society, Rhode Island · Zbl 1022.47001 · doi:10.1090/gsm/050
[2] Agarwal, P.; Agarwal, R.; Ruzhansky, M., Special functions and analysis of differential equations (2020), Oxford: Chapman and Hall/CRC Press, Oxford · Zbl 1441.33001 · doi:10.1201/9780429320026
[3] Alefeld, G.; Hertzberger, J., Introduction to interval computations (2012), New York: Elsevier Academic Press, New York
[4] Aliprantis, Burkinshaw. 1955. Positive operators. In Pure and applied mathematics, 119. New York: Academic Press. · Zbl 0608.47039
[5] Aliprantis, C., and K. Border. 2005. Infinite dimensional analysis. In A Hitchhiker’s guide. New York: Springer. · Zbl 1156.46001
[6] Anguelov, R., Dedekind order completion Of C(X) by Hausdorff continuous functions, Questiones Mathematicae, 27, 153-170 (2004) · Zbl 1062.54017 · doi:10.2989/16073600409486091
[7] Anguelov, R., Rational extensions of C(X) via Hausdorff continuous functions, Thai Journal of Mathematics, 5, 2, 261-272 (2007) · Zbl 1163.54012
[8] Anguelov, R.; Markov, S., Extended segment analysis, Freiburger Intervall-Berichte, 10, 1-63 (1981) · Zbl 0468.65024
[9] Anguelov, R., and S. Markov. 2006. Numerical computations With Hausdorff continuous functions. In Numerical methods and applications 2006, Lecture Notes in Computer Science 4310, pp. 279-286. Springer. · Zbl 1137.65346
[10] Anguelov, R.; Rosinger, E., Hausdorff continuous solutions of nonlinear PDEs through the order completion method, Questiones Mathematicae, 28, 3, 271-285 (1981) · Zbl 1330.35080 · doi:10.2989/16073600509486128
[11] Anguelov, R.; Rosinger, E., Solving large classes of nonlinear systems of PDEs, Computers & Mathematics with Applications, 53, 491-507 (2007) · Zbl 1130.35026 · doi:10.1016/j.camwa.2006.02.040
[12] Anguelov, R.; van der Walt, J., Order convergence structure on c(X), Questiones Mathematicae, 28, 4, 425-457 (2005) · Zbl 1094.46004 · doi:10.2989/16073600509486139
[13] Baire, R. 1905. Leçons Sur Les Fonctions Discontinues. Professées Au Collège De France Rédigées Par Arnaud Denjoy, Paris: Gauthier-Villars. · JFM 36.0438.01
[14] Dăneţ, N., When is every Hausdorff continuous interval-valued function bounded by continuous functions, Questiones Mathematicae, 32, 363-369 (2009) · Zbl 1179.26089 · doi:10.2989/QM.2009.32.3.7.908
[15] Ercan, Z.; Wickstead, A., Banach lattices of continuous Banach lattice-valued functions, Journal of Mathematical Analysis and Applications, 198, 121-136 (1996) · Zbl 0869.46012 · doi:10.1006/jmaa.1996.0072
[16] Ha, DM, Functional analysis: a gentle introduction (2006), New York: Matrix Editions/University of Michigan, New York · Zbl 1106.46001
[17] Jordan, T., Linear operators for quantum mechanics (1969), New York: Wiley, New York · Zbl 0174.27901 · doi:10.1119/1.1975255
[18] Kraemer, W.; von Gudenberg, JW, Scientific computing, validated numerics, interval methods (2001), Moscow: Kluwer Academic, Moscow
[19] Luxemburg, W., and A. Zaanen. 1971. Riesz spaces I & II. Amsterdam: North Holland. · Zbl 0231.46014
[20] Mack, J.; Johnson, D., The dedekind completion of C(X), Pacific Journal of Mathematics, 20, 231-243 (1967) · Zbl 0152.39802 · doi:10.2140/pjm.1967.20.231
[21] Markov, R.A.S., and B. Sendov. 2006. On the normed linear space of Hausdorff continuous functions. In Large-scale scientific computing, Lecture Notes in Computer Science 3742, pp. 281-288, Springer. · Zbl 1142.46316
[22] Markov, RAS; Sendov, B., The set of Hausdorff continuous functions - the largest linear space of interval functions, Reliable Computing, 12, 337-363 (2006) · Zbl 1110.65036 · doi:10.1007/s11155-006-9006-5
[23] Michael, E. 2004. d-12 Paracompact spaces. In Enclycopedia of general topology, ed. Hart et al., pp. 195-198. Elsevier.
[24] Mimna, R.; Wingler, E., Locally bounded functions, Real Analysis Exchange, 23, 251-258 (1998) · Zbl 0945.26005 · doi:10.2307/44152849
[25] Moore, R., Interval analysis (1966), Englewood Cliff: Prentice Hall, Englewood Cliff · Zbl 0176.13301
[26] Nagami, K., Baire sets, borel sets and some typical semicontinuous functions, Nagoya Mathematical Journal, 7, 85-93 (1954) · Zbl 0057.14802 · doi:10.1017/S0027763000018079
[27] Oberguggenberger, M., and E. Rosinger. 1994. Solution of continuous nonlinear PDEs through order completion. Amsterdam: North-Holland. · Zbl 0821.35001
[28] Ruzhansky, M.; Cho, YJ; Agarwal, P.; Area, I., Advances in real and complex analysis with applications (2017), Singapore: Birkhäuser, Singapore · Zbl 1381.00029 · doi:10.1007/978-981-10-4337-6
[29] Tietze, H., Uber Funktionen, Die Auf Einer Abgeschlossenen Menge Stetig Sind, Fur Die Reine Und Angewandte Mathematik, 145, 9-14 (1914) · JFM 45.0628.03
[30] Tong, H., Some characterizations of normal and perfectly normal spaces, Duke Mathematical Journal, 19, 289-292 (1952) · Zbl 0046.16203 · doi:10.1215/S0012-7094-52-01928-5
[31] van der Walt, J., Vector-valued interval functions and the dedekind completion of C(X, E), Positivity, 21, 1143-1159 (2017) · Zbl 1386.46038 · doi:10.1007/s11117-016-0456-7
[32] Zink, R., On semicontinuous functions and Baire functions, Transactions of the American Mathematical Society, 117, 1-9 (1965) · Zbl 0143.27703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.