Cuntz, Michael; Elia, Sophia; Labbé, Jean-Philippe Congruence normality of simplicial hyperplane arrangements via oriented matroids. (English) Zbl 1487.52030 Ann. Comb. 26, No. 1, 1-85 (2022). Reviewer: Piotr Pokora (Kraków) MSC: 52C35 14N20 52C40 PDF BibTeX XML Cite \textit{M. Cuntz} et al., Ann. Comb. 26, No. 1, 1--85 (2022; Zbl 1487.52030) Full Text: DOI OpenURL
Dermenjian, Aram; Hohlweg, Christophe; McConville, Thomas; Pilaud, Vincent The facial weak order on hyperplane arrangements. (English) Zbl 1480.52018 Discrete Comput. Geom. 67, No. 1, 166-202 (2022). MSC: 52C35 05E99 06A99 52C40 PDF BibTeX XML Cite \textit{A. Dermenjian} et al., Discrete Comput. Geom. 67, No. 1, 166--202 (2022; Zbl 1480.52018) Full Text: DOI OpenURL
Palu, Yann; Pilaud, Vincent; Plamondon, Pierre-Guy Non-kissing complexes and tau-tilting for gentle algebras. (English) Zbl 07455849 Memoirs of the American Mathematical Society 1343. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5004-5/pbk; 978-1-4704-6912-2/ebook). vii, 95 p. (2021). MSC: 16-02 16G10 16G20 05E10 05E45 06B10 52B11 PDF BibTeX XML Cite \textit{Y. Palu} et al., Non-kissing complexes and tau-tilting for gentle algebras. Providence, RI: American Mathematical Society (AMS) (2021; Zbl 07455849) Full Text: DOI arXiv OpenURL
Hoang, Hung P.; Mütze, Torsten Combinatorial generation via permutation languages. II. Lattice congruences. (English) Zbl 1479.05182 Isr. J. Math. 244, No. 1, 359-417 (2021). MSC: 05C45 68W40 68Q45 52B11 52B12 06A07 PDF BibTeX XML Cite \textit{H. P. Hoang} and \textit{T. Mütze}, Isr. J. Math. 244, No. 1, 359--417 (2021; Zbl 1479.05182) Full Text: DOI arXiv OpenURL
Albertin, Doriann; Pilaud, Vincent; Ritter, Julian Removahedral congruences versus permutree congruences. (English) Zbl 1475.52017 Electron. J. Comb. 28, No. 4, Research Paper P4.8, 38 p. (2021). MSC: 52B11 52B12 03G10 06B10 PDF BibTeX XML Cite \textit{D. Albertin} et al., Electron. J. Comb. 28, No. 4, Research Paper P4.8, 38 p. (2021; Zbl 1475.52017) Full Text: DOI arXiv OpenURL
Reading, Nathan; Speyer, David E.; Thomas, Hugh The fundamental theorem of finite semidistributive lattices. (English) Zbl 1485.06003 Sel. Math., New Ser. 27, No. 4, Paper No. 59, 53 p. (2021). Reviewer: Ivan Chajda (Přerov) MSC: 06B05 06A15 06B15 06D75 PDF BibTeX XML Cite \textit{N. Reading} et al., Sel. Math., New Ser. 27, No. 4, Paper No. 59, 53 p. (2021; Zbl 1485.06003) Full Text: DOI arXiv OpenURL
Reading, Nathan A combinatorial approach to scattering diagrams. (English) Zbl 1446.13016 Algebr. Comb. 3, No. 3, 603-636 (2020). MSC: 13F60 14N35 14J33 05E10 05A15 20F55 PDF BibTeX XML Cite \textit{N. Reading}, Algebr. Comb. 3, No. 3, 603--636 (2020; Zbl 1446.13016) Full Text: DOI arXiv OpenURL
Pilaud, Vincent Polytopal realizations and Hopf algebra structures for lattice quotients of the weak order. (English) Zbl 1436.05006 Sémin. Lothar. Comb. 82B, 82B.3, 12 p. (2019). MSC: 05A05 05A15 16T05 PDF BibTeX XML Cite \textit{V. Pilaud}, Sémin. Lothar. Comb. 82B, 82B.3, 12 p. (2019; Zbl 1436.05006) Full Text: Link OpenURL
Hopkins, Sam The CDE property for skew vexillary permutations. (English) Zbl 1421.05004 J. Comb. Theory, Ser. A 168, 164-218 (2019). MSC: 05A05 05E10 06A07 PDF BibTeX XML Cite \textit{S. Hopkins}, J. Comb. Theory, Ser. A 168, 164--218 (2019; Zbl 1421.05004) Full Text: DOI arXiv OpenURL
Reading, Nathan Lattice homomorphisms between weak orders. (English) Zbl 07056830 Electron. J. Comb. 26, No. 2, Research Paper P2.23, 50 p. (2019). MSC: 20F55 06B10 PDF BibTeX XML Cite \textit{N. Reading}, Electron. J. Comb. 26, No. 2, Research Paper P2.23, 50 p. (2019; Zbl 07056830) Full Text: arXiv Link OpenURL
Garver, Alexander; McConville, Thomas Lattice properties of oriented exchange graphs and torsion classes. (English) Zbl 1408.16011 Algebr. Represent. Theory 22, No. 1, 43-78 (2019). MSC: 16G20 18E40 16G70 05E10 PDF BibTeX XML Cite \textit{A. Garver} and \textit{T. McConville}, Algebr. Represent. Theory 22, No. 1, 43--78 (2019; Zbl 1408.16011) Full Text: DOI arXiv OpenURL
Mühle, Henri The core label order of a congruence-uniform lattice. (English) Zbl 07031055 Algebra Univers. 80, No. 1, Paper No. 10, 22 p. (2019). MSC: 06B05 06A07 PDF BibTeX XML Cite \textit{H. Mühle}, Algebra Univers. 80, No. 1, Paper No. 10, 22 p. (2019; Zbl 07031055) Full Text: DOI arXiv OpenURL
Henri, Mühle On the lattice property of shard orders. (English) Zbl 1465.06003 Sémin. Lothar. Comb. 80B, 80B.4, 12 p. (2018). MSC: 06B05 06A07 06D75 52C35 PDF BibTeX XML Cite \textit{M. Henri}, Sémin. Lothar. Comb. 80B, 80B.4, 12 p. (2018; Zbl 1465.06003) Full Text: Link OpenURL
Garver, Alexander; McConville, Thomas Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions. (English) Zbl 1427.05235 J. Comb. Theory, Ser. A 158, 126-175 (2018). MSC: 05E45 05A17 PDF BibTeX XML Cite \textit{A. Garver} and \textit{T. McConville}, J. Comb. Theory, Ser. A 158, 126--175 (2018; Zbl 1427.05235) Full Text: DOI OpenURL
McConville, Thomas Enumerative properties of grid associahedra. (English. French summary) Zbl 1385.05087 Sémin. Lothar. Comb. 78B, 78B.61, 12 p. (2017). MSC: 05E15 20F55 06B30 PDF BibTeX XML Cite \textit{T. McConville}, Sémin. Lothar. Comb. 78B, 78B.61, 12 p. (2017; Zbl 1385.05087) Full Text: Link OpenURL
McConville, Thomas Crosscut-simplicial lattices. (English) Zbl 1432.06003 Order 34, No. 3, 465-477 (2017). MSC: 06B10 06A07 05E45 20F55 PDF BibTeX XML Cite \textit{T. McConville}, Order 34, No. 3, 465--477 (2017; Zbl 1432.06003) Full Text: DOI arXiv OpenURL
McConville, Thomas Lattice structure of grid-Tamari orders. (English) Zbl 1355.05276 J. Comb. Theory, Ser. A 148, 27-56 (2017). MSC: 05E15 06A07 PDF BibTeX XML Cite \textit{T. McConville}, J. Comb. Theory, Ser. A 148, 27--56 (2017; Zbl 1355.05276) Full Text: DOI arXiv OpenURL
Mühle, Henri Trimness of closed intervals in Cambrian semilattices. (Sveltesse des intervalles bornés d’un demi-treillis cambrien.) (English. French summary) Zbl 1376.20041 C. R., Math., Acad. Sci. Paris 354, No. 2, 113-120 (2016). MSC: 20F55 06A07 05E15 PDF BibTeX XML Cite \textit{H. Mühle}, C. R., Math., Acad. Sci. Paris 354, No. 2, 113--120 (2016; Zbl 1376.20041) Full Text: DOI arXiv OpenURL
Santocanale, Luigi; Wehrung, Friedrich Lattices of regular closed subsets of closure spaces. (English) Zbl 1404.06006 Int. J. Algebra Comput. 24, No. 7, 969-1030 (2014). MSC: 06A15 05C40 05C63 05C05 06A12 06B23 06B25 20F55 PDF BibTeX XML Cite \textit{L. Santocanale} and \textit{F. Wehrung}, Int. J. Algebra Comput. 24, No. 7, 969--1030 (2014; Zbl 1404.06006) Full Text: DOI arXiv OpenURL
Reading, Nathan Noncrossing partitions and the shard intersection order. (English) Zbl 1290.05163 J. Algebr. Comb. 33, No. 4, 483-530 (2011). MSC: 05E45 05A18 20F55 PDF BibTeX XML Cite \textit{N. Reading}, J. Algebr. Comb. 33, No. 4, 483--530 (2011; Zbl 1290.05163) Full Text: DOI arXiv OpenURL
Reading, Nathan; Speyer, David E. Sortable elements in infinite Coxeter groups. (English) Zbl 1231.20036 Trans. Am. Math. Soc. 363, No. 2, 699-761 (2011). Reviewer: Erich W. Ellers (Toronto) MSC: 20F55 20F05 05E15 PDF BibTeX XML Cite \textit{N. Reading} and \textit{D. E. Speyer}, Trans. Am. Math. Soc. 363, No. 2, 699--761 (2011; Zbl 1231.20036) Full Text: DOI arXiv OpenURL
Reading, Nathan Lattice congruences, fans and Hopf algebras. (English) Zbl 1133.20027 J. Comb. Theory, Ser. A 110, No. 2, 237-273 (2005). MSC: 20F55 05E05 06A07 06B10 16W30 52C35 PDF BibTeX XML Cite \textit{N. Reading}, J. Comb. Theory, Ser. A 110, No. 2, 237--273 (2005; Zbl 1133.20027) Full Text: DOI arXiv OpenURL
Reading, Nathan Lattice congruences of the weak order. (English) Zbl 1097.20036 Order 21, No. 4, 315-344 (2004). Reviewer: Shi Jian-yi (Shanghai) MSC: 20F55 52C35 06A07 08A30 PDF BibTeX XML Cite \textit{N. Reading}, Order 21, No. 4, 315--344 (2004; Zbl 1097.20036) Full Text: DOI arXiv OpenURL
Reading, Nathan The order dimension of the poset of regions in a hyperplane arrangement. (English) Zbl 1044.52010 J. Comb. Theory, Ser. A 104, No. 2, 265-285 (2003). Reviewer: J. L. Ramirez Alfonsin (Paris) MSC: 52C35 PDF BibTeX XML Cite \textit{N. Reading}, J. Comb. Theory, Ser. A 104, No. 2, 265--285 (2003; Zbl 1044.52010) Full Text: DOI arXiv Link OpenURL