Klesov, O. I.; Steinebach, J. G. On preserving the limit points of corresponding objects. (English) Zbl 1442.26003 J. Math. Anal. Appl. 486, No. 2, Article ID 123916, 8 p. (2020). Summary: Suppose that, for two given sequences \(\{a_n\}\) and \(\{b_n\},\) \[ \liminf\limits_{n \to \infty} \frac{b_n}{a_n} = 1 \] and let a function \(f\) be given. What can then be said about the limit behavior of the corresponding ratio \[ \frac{f(b_n)}{f(a_n)} \] as \(n \to \infty\)? In general, no definite answer can be given to this question. We study a case where a definite answer is possible, namely the case of a regularly varying function \(f\) of nonzero order. MSC: 26A12 Rate of growth of functions, orders of infinity, slowly varying functions 40A05 Convergence and divergence of series and sequences Keywords:regularly varying functions; slowly varying functions; functions preserving the asymptotic equivalence; corresponding objects; set of limit points × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Berman, S. M., Sojourns and extremes of a diffusion process on a fixed interval, Adv. Appl. Probab., 14, 811-832 (1982) · Zbl 0494.60076 [2] Berman, S. M., The tail of the convolution of densities and its application to a model of HIV-latency time, Ann. Appl. Probab., 2, 481-502 (1992) · Zbl 0752.62014 [3] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0617.26001 [4] Buldygin, V. V.; Indlekofer, K.-H.; Klesov, O. I.; Steinebach, J. G., Asymptotics of renewal processes: some recent developments, Ann. Univ. Sci. Budapest, Sect. Comp., 28, 107-139 (2008) · Zbl 1164.60326 [5] Buldygin, V. V.; Indlekofer, K.-H.; Klesov, O. I.; Steinebach, J. G., Pseudo-Regularly Varying Functions and Generalized Renewal Processes (2018), Springer Nature Switzerland: Springer Nature Switzerland Cham (Switzerland) · Zbl 1422.60003 [6] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., Properties of a Subclass of Avakumović Functions and Their Generalized Inverses, vol. 85 (2001), Department of Mathematics and Computer Science, Philipps University: Department of Mathematics and Computer Science, Philipps University Marburg (Germany), preprint · Zbl 1006.60087 [7] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., On Factorization Representations for Avakumović-Karamata Functions with Nondegenerate Groups of Regular Points, vol. 89 (2002), Department of Mathematics and Computer Science, Philipps University: Department of Mathematics and Computer Science, Philipps University Marburg (Germany), preprint · Zbl 1062.26002 [8] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., Properties of a subclass of Avakumović functions and their generalized inverses, Ukr. Math. J., 54, 179-206 (2002) · Zbl 1006.60087 [9] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., On some properties of asymptotically quasi-inverse functions and their applications. I, Theory Probab. Math. Stat., 70, 11-28 (2005) · Zbl 1103.26001 [10] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., On some properties of asymptotically quasi-inverse functions and their applications. II, Theory Probab. Math. Stat., 71, 37-52 (2005) · Zbl 1101.26003 [11] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., PRV property and the asymptotic behaviour of solutions of stochastic differential equations, Theory Stoch. Process., 11, 42-57 (2005) · Zbl 1142.60362 [12] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., The PRV property of functions and the asymptotic behavior of solutions of stochastic differential equations, Theory Probab. Math. Stat., 72, 11-25 (2006) · Zbl 1123.60044 [13] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., On some extensions of Karamata’s theory and their applications, Publ. Inst. Math. (Belgr.) (N. S.), 80, 59-96 (2006) · Zbl 1199.26001 [14] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., PRV property and the φ-asymptotic behavior of solutions of stochastic differential equations, Lith. Math. J., 4, 361-378 (2007) [15] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., Precise asymptotics over a small parameter for a series of large deviation probabilities, Theory Stoch. Process., 13, 44-56 (2007) · Zbl 1152.60018 [16] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., On some properties of asymptotically quasi-inverse functions, Theory Probab. Math. Stat., 77, 15-30 (2008) · Zbl 1068.26002 [17] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., On the convergence to infinity of positive increasing functions, Ukr. Math. J., 62, 1507-1518 (2010) · Zbl 1240.26002 [18] Buldygin, V. V.; Klesov, O. I.; Steinebach, J. G., Asymptotic properties of absolutely continuous functions and strong laws of large numbers for renewal processes, Theory Probab. Math. Stat., 87, 1-12 (2013) · Zbl 1301.26006 [19] Cline, D. B.H., Intermediate regular and Π-variation, Proc. Lond. Math. Soc., 68, 3, 594-616 (1994) · Zbl 0793.26004 [20] Cline, D. B.H.; Samorodnitsky, G., Subexponentiality of the product of independent random variables, Stoch. Process. Appl., 49, 75-98 (1994) · Zbl 0799.60015 [21] Djurčić, D., O-regularly varying functions and strong asymptotic equivalence, J. Math. Anal. Appl., 220, 451-461 (1998) · Zbl 0920.26004 [22] Djurčić, D.; Torgašev, A., Strong asymptotic equivalence and inversion of functions in the class \(K_c\), J. Math. Anal. Appl., 255, 383-390 (2001) · Zbl 0991.26002 [23] Doob, J. L., Renewal theory from the point of view of the theory of probability, Trans. Am. Math. Soc., 63, 422-438 (1948) · Zbl 0041.45405 [24] Gihman, I. I.; Skorohod, A. V., Stochastic Differential Equations (1972), Springer: Springer Berlin, Heidelberg, New York · Zbl 0242.60003 [25] Gut, A.; Klesov, O.; Steinebach, J., Equivalences in strong limit theorems for renewal counting processes, Stat. Probab. Lett., 35, 381-394 (1997) · Zbl 0885.60026 [26] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1959), Oxford at the Clarendon Press: Oxford at the Clarendon Press Oxford [27] Jelenković, P. R.; Lazar, A. A., Asymptotic results for multiplexing subexponential on-off processes, Adv. Appl. Probab., 31, 394-421 (1999) · Zbl 0952.60098 [28] Klesov, O.; Rychlik, Z.; Steinebach, J., Strong limit theorems for general renewal processes, Probab. Math. Stat., 21, 329-349 (2001) · Zbl 1001.60024 [29] Korenblyum, B. I., On the asymptotic behavior of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk USSR (N.S.), 104, 173-176 (1955), (in Russian) · Zbl 0067.29003 [30] Matuszewska, W., Regularly increasing functions in connection with the theory of \(L^{\ast \varphi}\) spaces, Stud. Math., 21, 317-344 (1961/1962) · Zbl 0123.30402 [31] Matuszewska, W., On a generalization of regularly increasing functions, Stud. Math., 24, 271-279 (1964) · Zbl 0171.33503 [32] Ng, K. W.; Tang, Q.; Yan, J.; Yang, H., Precise large deviations for sums of random variables with consistently varying tails, J. Appl. Probab., 41, 93-107 (2004) · Zbl 1051.60032 [33] Schlegel, S., Ruin probabilities in perturbed risk models, Insur. Math. Econ., 22, 93-104 (1998) · Zbl 0907.90100 [34] Seneta, E., Regularly Varying Functions (1976), Springer: Springer Berlin, Heidelberg, New York · Zbl 0324.26002 [35] Stadtmüller, U.; Trautner, R., Tauberian theorems for Laplace transforms, J. Reine Angew. Math., 311/312, 283-290 (1979) · Zbl 0409.44003 [36] Stadtmüller, U.; Trautner, R., Tauberian theorems for Laplace transforms in dimension \(D > 1\), J. Reine Angew. Math., 323, 127-138 (1981) · Zbl 0445.44004 [37] Takaŝi, K.; Manojlović, J. V.; Milošević, J., Intermediate solutions of second order quasilinear ordinary differential equations in the framework of regular variation, Appl. Math. Comput., 219, 8178-8191 (2013) · Zbl 1294.34057 [38] Takaŝi, K.; Manojlović, J. V.; Milošević, J., Intermediate solutions of fourth order quasilinear differential equations in the framework of regular variation, Appl. Math. Comput., 248, 246-272 (2014) · Zbl 1338.34099 [39] Tang, Q., Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stoch. Models, 20, 281-297 (2004) · Zbl 1130.60312 [40] Yakymiv, A. L., Asymptotics of the probability of nonextinction of critical Bellman-Harris branching processes, Proc. Steklov Inst. Math., 4, 189-217 (1988) · Zbl 0665.60087 [41] Yang, Y.; Leipus, R.; Šiaulys, J., Local precise large deviations for sums of random variables with O-regularly varying densities, Stat. Probab. Lett., 80, 1559-1567 (2010) · Zbl 1196.60043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.