×

NWO sequences, weighted potential operators, and Schrödinger eigenvalues. (English) Zbl 0845.42007

The author applies the theory of nearly weakly orthonormal (NWO) sequences of functions to give sufficient conditions for boundedness of various potential operators between spaces with weights. He applies these results to give eigenvalue estimates for the Schrödinger operator.
Let \({\mathbf Q}\) denote the set of all dyadic cubes in \(\mathbb{R}^n\). For each \(Q\in{\mathbf Q}\) let \(\zeta_Q\) denote the center of \(Q\), \(\eta_Q\) denote the sidelength of \(Q\), \(|Q|\) the volume of \(Q\), and denote by \(KQ\) the cube with the same center as \(Q\) but \(K\) times the side length. A set of functions \(\{e_Q(x)\}_{Q\in{\mathbf Q}}\) is an NWO sequence if the associated maximal function \[ f\to f^*(x)= \sup_{|\zeta_Q- x|\leq \eta_Q} (|Q|^{- 1/q}\langle f, e_Q\rangle) \] is bounded on \(L^q\), where \(1/q+ 1/p= 1\). Sufficient conditions for this are that the \(\{e_Q\}\) have support in \(KQ\) and that there exists a \(p< r\leq \infty\) and \(c> 0\) so that for all \(Q\), \(|e_Q|_r\leq c|Q|^{1/r- 1/p}\). Another preliminary result worth mentioning is that it is easy to give estimates and finite rank approximations for operators written as tensor products of NWO sequences of functions. Given a sequence \(\{a_Q\}_{Q\in{\mathbf Q}}\), define a new sequence \(\{a^*_Q\}_{Q\in{\mathbf Q}}\) by \(a^*_Q= \sum_{R\in{\mathbf Q}, R\subset Q} {|R|\over |Q|} |a_R|\), where one should note the typo in the article which writes \(a_Q\) instead of \(a_R\). If the sequence \(\{a^*_Q\}\) is bounded, the discrete Carleson measure norm of the sequence is \(|\{a_Q\}|_{CM_d}= \sup\{a^*_Q\}\). If an operator acting on \(L^p\) can be written as \(T= \sum_{Q\in{\mathbf Q}} a_Q e_Q\otimes f_Q\), where \(\{e_Q\}_{Q\in{\mathbf Q}}\) is NWO for \(L^q\) and \(\{f_Q\}_{Q\in{\mathbf Q}}\) is NWO for \(L^p\), then \(T\) is bounded from \(L^p\) into \(L^p\) and \(|T|\leq C|\{a_Q\}|_{CM_d}\). If \(\{a^*_Q\}\) tends to zero, one can define the nonincreasing rearrangement of \(\{a^*_Q\}\), which is denoted \(\{a^*(n)\}\). In this case \(T\) will be a compact operator and if one constructs the finite rank approximation with \(a^*(j)= a^*_{Q_j}\), \(j= 1, 2,\dots, N\), \(F_N= \sum^N_{j= 1} a_{Q_j} e_{Q_j}\otimes f_{Q_j}\), then \(|T- F_N|\leq Ca^*(N+ 1)\).
The author studies, e.g., the Riesz potential \(I_\alpha\) as a map from \(L^p_v\) into \(L^q_u\), where \[ I_\alpha f(x)= \int_{\mathbb{R}^n} {f(y)\over |x- y|^{d- \alpha}} dy \] by writing it as an integral operator with kernel \[ K(x, y)= u(x)^{1/q} v(y)^{- 1/p}/|x- y|^{d- \alpha}, \] considered as a map of \(L^p\to L^q\). He uses a Whitney decomposition to find a tensor product decomposition which dominates this operator and applies the above estimates for tensor products to estimate \(I_\alpha\). In the tensor product \(e_Q(y)= |v^{- 1/p} \chi_Q|^{- 1}_{p'} v(y)^{- 1/p} \chi_Q(y)\), where \(Q\in{\mathbf Q}\), and \(\chi_Q\) denotes the characteristic function of the cube \(Q\). The expression for \(f\) is similar but involves \(u^{1/q}\) and the \(L^q\) norm. When \(w^p\in A_\infty\), he has shown that \(|w_{\chi_Q}|^{- 1}_p w_{\chi_Q}\) is NWO for \(L^p\). Now \(I_\alpha\) maps \(L^p_v\) into \(L^q_u\) if the tensor product maps \(L^p\) into \(L^q\), and under the assumption that \(u[= (u^{1/q})^q]\) and \(v^{- p'/p}[= (v^{- 1/p})^{p'}]\) belong to \(A_\infty\), the boundedness condition for the tensor product becomes \[ A= \sup_{Q\in{\mathbf Q}} \eta^{- d+ \alpha}_Q \Biggl( \int_Q v(x)^{- p'/p} dx\Biggr)^{1/p'} \Biggl( \int_Q u(x)dx\Biggr)^{1/q}< + \infty, \] and the norm of the tensor product estimator is bounded by \(cA\) and thus so is the norm of \(T\). Results are also given for the Bessel potential operator, local versions (for a fixed \(R\in{\mathbf Q}\)), and results on a finite rank approximation for the compact case.
He concludes with estimates for the singular values of the compact operators leading to sufficient conditions on the kernel for an operator to belong to a Schatten-von Neumann class. He concludes by showing that if \(\{|w_{\chi_Q}|^{- 1}_p w_{\chi_Q}\}_{Q\in{\mathbf Q}}\) (the operators making up the tensor product decomposition of \(I_\alpha\)) are NWO, then \(w^p\) must be dyadic \(A_\infty\).

MSC:

42B25 Maximal functions, Littlewood-Paley theory
35J10 Schrödinger operator, Schrödinger equation
47A80 Tensor products of linear operators
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Adams, Weighted nonlinear potential theory , Trans. Amer. Math. Soc. 297 (1986), no. 1, 73-94. JSTOR: · Zbl 0656.31012 · doi:10.2307/2000457
[2] M. Sh. Birman, G. E. Karadzhov, and M. Z. Solomyak, Boundedness conditions and spectrum estimates for the operators \(b(X)a(D)\) and their analogs , Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989-90), Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 85-106. · Zbl 0768.47025
[3] S. Chanillo, J.-O. Strömberg, and R. L. Wheeden, Norm inequalities for potential-type operators , Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 311-335. · Zbl 0696.31010 · doi:10.4171/RMI/52
[4] S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions , Amer. J. Math. 107 (1985), no. 5, 1191-1226. JSTOR: · Zbl 0575.42026 · doi:10.2307/2374351
[5] S. Chanillo and R. L. Wheeden, \(L^ p\)-estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators , Comm. Partial Differential Equations 10 (1985), no. 9, 1077-1116. · Zbl 0578.46024 · doi:10.1080/03605308508820401
[6] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators , Comment. Math. Helv. 60 (1985), no. 2, 217-246. · Zbl 0575.42025 · doi:10.1007/BF02567411
[7] C. Fefferman, The uncertainty principle , Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129-206. · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[8] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics , North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. · Zbl 0578.46046
[9] R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators , Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228. · Zbl 0591.47037 · doi:10.5802/aif.1074
[10] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals , Trans. Amer. Math. Soc. 192 (1974), 261-274. · Zbl 0289.26010 · doi:10.2307/1996833
[11] R. Newton, Scattering theory of waves and particles , McGraw-Hill Book Co., New York, 1966. · Zbl 0178.52703
[12] C. Pérez, Two weighted norm inequalities for Riesz potentials and uniform \(L^ p\)-weighted Sobolev inequalities , Indiana Univ. Math. J. 39 (1990), no. 1, 31-44. · Zbl 0736.42015 · doi:10.1512/iumj.1990.39.39004
[13] M. Reed and B. Simon, Methods of modern mathematical physics. III, Scattering theory , Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979. · Zbl 0405.47007
[14] R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators , Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988), Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 425-444. · Zbl 0727.47010
[15] R. Rochberg, Size estimates for eigenvectors of singular integral operators and Schrödinger operators and for derivatives of quasi-conformal mappings , preprint, 1993.
[16] R. Rochberg and S. Semmes, A decomposition theorem for BMO and applications , J. Funct. Anal. 67 (1986), no. 2, 228-263. · Zbl 0593.47027 · doi:10.1016/0022-1236(86)90038-8
[17] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators , J. Funct. Anal. 86 (1989), no. 2, 237-306. · Zbl 0699.47012 · doi:10.1016/0022-1236(89)90054-2
[18] R. Rochberg and S. Semmes, End point results for estimates of singular values of singular integral operators , Contributions to operator theory and its applications (Mesa, AZ, 1987) eds. J. W. Heltonand and L. Rodman, Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 217-231. · Zbl 0681.47014
[19] R. Rochberg and M. Taibleson, An averaging operator on a tree , Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer-Verlag, Berlin, 1989, pp. 207-213. · Zbl 0681.47013 · doi:10.1007/BFb0086805
[20] E. Sawyer and R. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces , preprint, 1991. JSTOR: · Zbl 0783.42011 · doi:10.2307/2374799
[21] M. Schechter, Weighted norm estimates for Sobolev spaces , Trans. Amer. Math. Soc. 304 (1987), no. 2, 669-687. JSTOR: · Zbl 0633.46029 · doi:10.2307/2000735
[22] M. Schechter, The spectrum of the Schrödinger operator , Trans. Amer. Math. Soc. 312 (1989), no. 1, 115-128. · Zbl 0714.35058 · doi:10.2307/2001209
[23] M. Schechter, Spectra of partial differential operators , Second Edition ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. · Zbl 0607.35005
[24] B. Simon, Trace ideals and their applications , London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979. · Zbl 0423.47001
[25] E. M. Stein, Singular integrals and differentiability properties of functions , Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[26] I. E. Verbitsky, Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through \(L^ p\infty\) , Integral Equations Operator Theory 15 (1992), no. 1, 124-153. · Zbl 0782.47027 · doi:10.1007/BF01193770
[27] S. Weinberg, Quasiparticles and the Born series , Phys. Rev. (2) 131 (1963), 440-460. · doi:10.1103/PhysRev.131.440
[28] S. Weinberg, Quasiparticles and perturbation theory , Lectures on Particles and Field Theory (Brandeis Summer Institute in The oretical Physics, 1964, Vol. 2), Prentice-Hall, Englewood Cliffs, N.J., 1965, pp. 289-403.
[29] R. Wheeden, A characterization of weighted norm inequalities for the fractional maximal function , preprint, 1991.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.