Hounkonnou, M. N.; Melong, F. Geometry and probability on the noncommutative 2-torus in a magnetic field. (English. Russian original) Zbl 1548.81139 Theor. Math. Phys. 220, No. 2, 1385-1401 (2024); translation from Teor. Mat. Fiz. 220, No. 2, 377-395 (2024). Summary: We describe the geometric and probabilistic properties of a noncommutative 2-torus in a magnetic field. We study the volume invariance, integrated scalar curvature, and the volume form by using the operator method of perturbation by an inner derivation of the magnetic Laplacian operator on the noncommutative 2-torus. We then analyze the magnetic stochastic process describing the motion of a particle subject to a uniform magnetic field on the noncommutative 2-torus, and discuss the related main properties. MSC: 81R60 Noncommutative geometry in quantum theory 81S25 Quantum stochastic calculus 46L87 Noncommutative differential geometry 46L85 Noncommutative topology Keywords:noncommutative 2-torus; magnetic Laplacian; quantum stochastic process × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Brown, L. G.; Douglas, R. G.; Fillmore, P. A., Extensions of \(C^*\)-algebras and \(K\)-homology, Ann. Math. (2), 105, 265-324, 1977 · Zbl 0376.46036 · doi:10.2307/1970999 [2] Connes, A., Noncommutative Geometry, 1994, San Diego, CA: Academic Press, San Diego, CA · Zbl 0818.46076 [3] Geloun, J. Ben; Hounkonnou, M. N.; Massamba, F., Moyal algebra: relevant properties, projective limits and applications in noncommutative field theory, SUT J. Math, 44, 55-88, 2008 · Zbl 1168.53044 · doi:10.55937/sut/1219852963 [4] Hounkonnou, M. N.; Massamba, F.; Geloun, J. Ben, Two-dimensional noncommutative field theory on the light cone, J. Geom. Symmetry Phys., 6, 38-46, 2006 · Zbl 1108.81048 [5] Kruszyński, P.; Woronowicz, S. L., A noncommutative Gelfand-Naimark theorem, J. Operator Theory, 8, 361-389, 1982 · Zbl 0499.46036 [6] Khalkhali, M., Basic Noncommutative Geometry, 2009, Zürich: EMS, Zürich · Zbl 1210.58006 · doi:10.4171/061 [7] Sinha, K. B., Noncommutative geometry, probability and quantum mechanics, Proceedings of the 8th International Workshop on Contemporary Problems in Mathematical Physics, 135-179, 2013, Singapore: World Sci., Singapore [8] Sakamoto, M.; Tanimura, S., An extension of Fourier analysis for the \(n\)-torus in the magnetic field and its application to spectral analysis of the magnetic Laplacian, J. Math. Phys., 44, 5042-5069, 2003 · Zbl 1062.81037 · doi:10.1063/1.1616203 [9] Chakraborty, P. S.; Goswami, D.; Sinha, K. B., Probability and geometry on some noncommutative manifolds, J. Operator Theory, 49, 185-201, 2003 · Zbl 1030.46102 [10] Rieffel, M. A., Noncommutative tori – a case study of noncommutative differentiable manifolds, Geometric and Topological Invariants of Elliptic Operators, 191-211, 1990, Providence, RI: AMS, Providence, RI · Zbl 0713.46046 · doi:10.1090/conm/105/1047281 [11] Goswami, D.; Pal, A. K.; Sinha, K. B., Stochastic dilation of a quantum dynamical semigroup on a separable unital \(C^*\) algebra, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3, 177-184, 2000 · Zbl 1243.81103 · doi:10.1142/S0219025700000108 [12] Goswami, D.; Sinha, K. B., Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra, Commun. Math. Phys., 205, 377-403, 1999 · Zbl 0935.46055 · doi:10.1007/s002200050682 [13] Sauvageot, J. L., Tangent bimodule and locality for dissipative operators on \(C^*\)-algebras, Quantum Probability and Applications IV, 322-338, 1989, Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0682.46042 · doi:10.1007/BFb0083561 [14] Fathizadeh, F., On the scalar curvature for the noncommutative four torus, J. Math. Phys., 56, 2015 · Zbl 1327.58010 · doi:10.1063/1.4922815 [15] Fathizadeh, F.; Khalkhali, M., Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., 7, 1145-1183, 2013 · Zbl 1295.46053 · doi:10.4171/jncg/145 [16] Bratteli, O.; Elliott, G. A.; Jorgensen, P. E. T., Decomposition of unbounded derivations into invariant and approximately inner parts, J. Reine Angew. Math., 1984, 166-193, 1984 · Zbl 0515.46057 · doi:10.1515/crll.1984.346.166 [17] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116, 1974 · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7 [18] Evans, M. P., Existence of quantum diffusions, Probab. Theory Related Fields, 81, 473-483, 1989 · Zbl 0667.60060 · doi:10.1007/BF00367298 [19] Evans, M. P.; Hudson, R. L., Perturbations of quantum diffusions, J. London Math. Soc., s2-41, 373-384, 1990 · Zbl 0719.60083 · doi:10.1112/jlms/s2-41.2.373 [20] Hudson, R. L.; Robinson, P., Quantum diffusions and the noncommutative torus, Lett. Math. Phys., 15, 47-53, 1988 · Zbl 0644.46047 · doi:10.1007/BF00416571 [21] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus, 1992, Basel: Birkhäuser, Basel · Zbl 1338.81010 · doi:10.1007/978-3-0348-0566-7 [22] Rosenberg, S., The Laplacian on a Riemannian manifold, 1997, Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0868.58074 · doi:10.1017/CBO9780511623783 [23] Folland, G. B., Harmonic Analysis in Phase Space, 1989, Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 0682.43001 · doi:10.1515/9781400882427 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.