×

Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions. (English) Zbl 1296.47041

Summary: One of the principal topics of this paper concerns the realization of self-adjoint operators \(L_{\Theta,\Omega}\) in \(L^2(\Omega; d^nx)^m\), \(m,n\in\mathbb N\), associated with divergence form elliptic partial differential expressions \(L\) with (nonlocal) Robin-type boundary conditions in bounded Lipschitz domains \(\Omega\subset\mathbb R^n\). In particular, we develop the theory in the vector-valued case and hence focus on matrix-valued differential expressions \(L\) which act as \[ Lu=- \left(\sum\limits_{j,k=1}^n\partial_j\left(\sum\limits_{\beta=1}^ma_{j,k}^{\alpha,\beta}\partial_ku_\beta\right)\right)_{1\leq\alpha\leq m},\quad u=(u_1,\dots,u_m). \] The (nonlocal) Robin-type boundary conditions are then of the form \[ v\cdot ADu+\Theta[u|_{\partial\Omega}]=0\text{ on }\partial\Omega, \] where \(\Theta\) represents an appropriate operator acting on Sobolev spaces associated with the boundary \(\partial\Omega\) of \(\Omega\), \(\nu\) denotes the outward pointing normal unit vector on \(\partial\Omega\), and \(Du:=(\partial_ju_\alpha)_{_{1\leq j \leq n}^{1\leq\alpha \leq m}}\).
Assuming \(\Theta\geq 0\) in the scalar case \(m=1\), we prove Gaussian heat kernel bounds for \(L_{\Theta,\Omega}\), by employing positivity preserving arguments for the associated semigroups and reducing the problem to the corresponding Gaussian heat kernel bounds for the case of Neumann boundary conditions on \(\partial\Omega\). We also discuss additional zero-order potential coefficients \(V\) and hence operators corresponding to the form sum \(L_{\Theta,\Omega}+V\).

MSC:

47F05 General theory of partial differential operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47D06 One-parameter semigroups and linear evolution equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972. · Zbl 0543.33001
[2] R. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Academic Press, New York, 2003. · Zbl 1098.46001
[3] H. Aikawa and T. Lundh, The 3G inequality for a uniformly John domain, Kodai Math. J. 28 (2005), 209–219. · Zbl 1079.31002 · doi:10.2996/kmj/1123767003
[4] C. D. Aliprantis and O. Burkinshaw, Positive compact operators on Banach lattices, Math. Z. 174 (1989), 289–298. · Zbl 0425.46015 · doi:10.1007/BF01161416
[5] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
[6] H. Ammari, H. Kang, and S. Kim, Sharp estimates for the Neumann functions and applications to quantitative photo-acoustic imaging in inhomogeneous media, J. Differential Equations 253 (2012), 41–72. · Zbl 1241.31008 · doi:10.1016/j.jde.2012.03.022
[7] P. R. S. Antunes, P. Freitas, and J. B. Kennedy, Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin Laplacian, ESAIM Control Optim. Calc. Var. 19 (2013), 438–459. · Zbl 1264.35151 · doi:10.1051/cocv/2012016
[8] W. Arendt, Generators of positive semigroups, in Infinite-Dimensional Systems, Springer, Berlin, 1984, pp. 1–15. · Zbl 0552.47016
[9] W. Arendt, Kato’s inequality: A characterization of generators of positive semigroups, Proc. Roy. Irish Acad. 84A (1984), 155–174. · Zbl 0617.47028
[10] W. Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), 321–349. · Zbl 0617.47029 · doi:10.1112/plms/s3-54.2.321
[11] W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, in Handbook of Differential Equations, Evolutionary Equations, Vol. 1, Elsevier, North-Holland, Amsterdam, 2004. · Zbl 1082.35001
[12] W. Arendt and C. J. K. Batty, Domination and ergodicity for positive semigroups, Proc. Amer. Math. Soc. 114 (1992), 743–747. · Zbl 0788.47032 · doi:10.1090/S0002-9939-1992-1072082-3
[13] W. Arendt and A. V. Bukhvalov, Integral representations of resolvents and semigroups, Forum Math. 6 (1994), 111–135. · Zbl 0803.47046 · doi:10.1515/form.1994.6.111
[14] W. Arendt and M. Demuth, Hölder’s inequality for perturbations of positive semigroups by potentials, J. Math. Anal. Appl. 316 (2006), 652–663. · Zbl 1084.47034 · doi:10.1016/j.jmaa.2005.05.002
[15] W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87–130. · Zbl 0879.35041
[16] W. Arendt and M. Warma, The Laplacian with Robin boundary conditions on arbitrary domains, Potential Anal. 19 (2003), 341–363. · Zbl 1028.31004 · doi:10.1023/A:1024181608863
[17] W. Arendt and M. Warma, Dirichlet and Neumann boundary conditions: What is in between?, J. Evol. Eq. 3 (2003), 119–135. · Zbl 1044.31005 · doi:10.1007/s000280300005
[18] N. Aronszajn and K. T. Smith, Characterization of positive reproducing kernels. Applications to Green’s functions, Amer. J. Math. 79 (1957), 611–622. · Zbl 0079.13603 · doi:10.2307/2372565
[19] M. S. Ashbaugh, F. Gesztesy, M. Mitrea, and G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223 (2010), 1372–1467. · Zbl 1191.35188 · doi:10.1016/j.aim.2009.10.006
[20] M. S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl, The Krein-von Neumann extension and its connection to an abstract buckling problem, Math. Nachr. 283 (2010), 165–179. · Zbl 1183.35100 · doi:10.1002/mana.200910067
[21] G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim. 25 (2004), 321–348. · Zbl 1072.35133 · doi:10.1081/NFA-120039655
[22] G. Auchmuty, Spectral characterization of the trace spaces H s(), SIAM J. Math. Anal. 38 (2006), 894–905. · Zbl 1120.46014 · doi:10.1137/050626053
[23] G. Barbatis, Spectral theory of singular elliptic operators with measurable coefficients, J. Funct. Anal. 155 (1998), 125–152. · Zbl 0907.35090 · doi:10.1006/jfan.1997.3195
[24] G. Barbatis, V. I. Burenkov, and P. D. Lamberti, Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains, in Around the Research of Vladimir Maz’ya. II. Partial Differential Equations, Springer, New York, 2010, pp. 23–60. · Zbl 1183.47040
[25] R. F. Bass, K. Burdzy, and Z.-Q. Chen On the Robin problem in fractal domains, Proc. London Math. Soc. (3) 96 (2008), 273–311. · Zbl 1136.60045 · doi:10.1112/plms/pdm045
[26] J. Behrndt, M. Langer, I. Lobanov, V. Lotoreichik, and I. Yu. Popov, A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains, J. Math. Anal. Appl. 371 (2010), 750–758. · Zbl 1198.35159 · doi:10.1016/j.jmaa.2010.06.006
[27] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. · Zbl 0647.46057
[28] O. Bratteli, A. Kishimoto, and D. W. Robinson, Positivity and monotonicity properties of C 0-semigroups. I, Commun. Math. Phys. 75 (1980), 67–84. · Zbl 0453.47020 · doi:10.1007/BF01962592
[29] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium States. Models in Quantum Statistical Mechanics, 2nd ed., 2nd printing, Springer, New York, 2002. · Zbl 0903.46066
[30] D. Bucur and D. Daners, An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. Partial Differential Equations 37 (2010), 75–86. · Zbl 1186.35118 · doi:10.1007/s00526-009-0252-3
[31] V. I. Burenkov and E. B. Davies, Spectral stability of the Neumann Laplacian, J. Differential Equations 186 (2002), 485–508. · Zbl 1042.35035 · doi:10.1016/S0022-0396(02)00033-5
[32] V. I. Burenkov, P. D. Lamberti, and M. Lanza de Cristoforis, Spectral stability of nonnegative self-adjoint operators, J. Math. Sci. (N.Y.) 149 (2008), 1417–1452. · doi:10.1007/s10958-008-0074-4
[33] V. I. Burenkov and M. Lanza de Cristoforis, Spectral stability of the Robin Laplacian, Proc. Steklov Inst. Math. 260 (2008), 68–89. · Zbl 1233.35082 · doi:10.1134/S0081543808010069
[34] S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions, J. Differential Equations 247 (2009), 1229–1248. · Zbl 1207.35180 · doi:10.1016/j.jde.2009.04.013
[35] Z.Q. Chen, R. J. Williams, and Z. Zhao, A Sobolev inequality and Neumann heat kernel estimate for unbounded domains, Math. Res. Lett. 1 (1994), 177–184. · Zbl 0847.46014 · doi:10.4310/MRL.1994.v1.n2.a5
[36] J. K. Choi and S. Kim, Neumann functions for second order elliptic systems with measurable coefficients, Trans. Amer. Math. Soc. 365 (2013), 6283–6307. · Zbl 1279.35039 · doi:10.1090/S0002-9947-2013-05886-2
[37] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Springer, Berlin, 1995. · Zbl 0819.60068
[38] M. Cranston, E. Fabes, and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1998), 171–194. · Zbl 0652.60076
[39] E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), 86–132. · Zbl 0886.35063 · doi:10.1006/jdeq.1997.3256
[40] D. Daners, Robin boundary value problems on arbitrary domains, Trans. Amer. Math. Soc. 352 (2000), 4207–4236. · Zbl 0947.35072 · doi:10.1090/S0002-9947-00-02444-2
[41] D. Daners, Heat kernel bounds for operators with boundary conditions, Math. Nachr. 217 (2000), 13–41. · Zbl 0973.35087 · doi:10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.0.CO;2-6
[42] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann. 335 (2006), 767–785. · Zbl 1220.35103 · doi:10.1007/s00208-006-0753-8
[43] D. Daners, Inverse positivity for general Robin problems on Lipschitz domains, Arch. Mat. 92 (2009), 57–69. · Zbl 1163.35011 · doi:10.1007/s00013-008-2918-z
[44] D. Daners and J. Kennedy, Uniqueness in the Faber-Krahn inequality for Robin problems, SIAM J. Math. Anal. 39 (2007), 1191–1207. · Zbl 1155.35403 · doi:10.1137/060675629
[45] D. Daners and J. B. Kennedy, On the asymptotic behaviour of the eigenvalues of a Robin problem, Differential Integral Equations 23 (2010), 659–669. · Zbl 1240.35370
[46] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2, Functional and Variational Methods, Springer, Berlin, 2000. · Zbl 0944.47002
[47] E. B. Davies, Properties of the Green’s functions of some Schrödinger operators, J. London Math. Soc. (2) 7 (1973), 483–491. · Zbl 0271.47003
[48] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. · Zbl 0457.47030
[49] E. B. Davies, Some norm bounds and quadratic form inequalities for Schrödinger operators. II, J. Operator Theory 12 (1984), 177–196. · Zbl 0567.47006
[50] E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), 319–334. · Zbl 0659.35009 · doi:10.2307/2374577
[51] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989. · Zbl 0699.35006
[52] E. B. Davies, Linear Operators and their Spectra, Cambridge Univ. Press, Cambridge, 2007. · Zbl 1138.47001
[53] M. Demuth, Spectral consequences due to general Hölder’s inequalities and domination of semigroups, in Recent Advances in Operator Theory and Applications, Birkhäuser, Basel, 2008, pp. 125–140. · Zbl 1175.47004
[54] P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J.Math. 34 (1979), 287–320. · Zbl 0438.47042 · doi:10.1007/BF02760610
[55] X. T. Duong and A. McIntosh, Functional calculi of second-order elliptic partial differential operatots with bounded measurable coefficients, J. Geom. Anal. 6 (1996), 181–205. · Zbl 0897.47041 · doi:10.1007/BF02921599
[56] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989. · Zbl 0664.47014
[57] R. E. Edwards, Functional Analysis. Theory and Applications, Dover, New York, 1995. · Zbl 0835.43007
[58] W. G. Faris, Quadratic forms and essential self-adjointness, Helv. Phys. Acta 45 (1972), 1074–1088.
[59] W. G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics 433, Springer, Berlin, 1975.
[60] W. Faris and B. Simon, Degenerate and non-degenerate ground states for Schrödinger operators, Duke Math. J. 42 (1975), 559–567. · Zbl 0339.35033 · doi:10.1215/S0012-7094-75-04251-9
[61] W. Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math. 1 (1957), 459–504 (1957). · Zbl 0077.29102
[62] N. Filonov, On an inequality between Dirichlet and Neumann eigenvalues for the Laplace operator, St. Petersburg Math. J. 16 (2005), 413–416. · Zbl 1078.35081 · doi:10.1090/S1061-0022-05-00857-5
[63] R. L. Frank, Remarks on eigenvalue estimates and semigroup domination, in Spectral and Scattering Theory for Quantum Magnetic Systems, Contemp. Math. 500, Amer. Math. Soc., Providence, RI, 2009, pp. 63–86. · Zbl 1183.81068
[64] G. Frobenius, Über Matrizen aus positiven Elementen, Sitzungsber. König. Preuss. Akad.Wiss., Berlin, 1908, pp. 471–476. · JFM 39.0213.03
[65] G. Frobenius, Über Matrizen aus positiven Elementen, Sitzungsber. König. Preuss. Akad.Wiss., Berlin, 1909, pp. 514–518. · JFM 40.0202.02
[66] G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber. König. Preuss. Akad. Wiss., Berlin, 1912, pp. 456–477. · JFM 43.0204.09
[67] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd revised and extended ed., de Gruyter, Berlin, 2011. · Zbl 1227.31001
[68] F. Gesztesy, On non-degenerate ground states for Schrödinger operators, Rep. Math. Phys. 20 (1984), 93–109. · Zbl 0567.35075 · doi:10.1016/0034-4877(84)90075-2
[69] F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys. 12 (2005), 443–471. · Zbl 1201.47028
[70] F. Gesztesy and M. Mitrea, Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Differential Equations 247 (2009), 2871–2896. · Zbl 1181.35155 · doi:10.1016/j.jde.2009.07.007
[71] F. Gesztesy and M. Mitrea, Self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains, J. Anal. Math. 113 (2011), 53–172. · Zbl 1231.47044 · doi:10.1007/s11854-011-0002-2
[72] F. Gesztesy, M. Mitrea, and M. Zinchenko, Variations on a Theme of Jost and Pais, J. Funct. Anal. 253 (2007), 399–448. · Zbl 1133.47010 · doi:10.1016/j.jfa.2007.05.009
[73] T. Giorgi and R. Smits, Monotonicity results for the principal eigenvalue of the generalized Robin problem, Illinois J. Math. 49 (2005), 1133–1143. · Zbl 1089.35038
[74] T. Giorgi and R. Smits, Bounds and monotonicity for the generalized Robin problem, Z. Angew. Math. Phys. 59 (2008), 600–618. · Zbl 1157.35072 · doi:10.1007/s00033-007-6125-8
[75] H. J. Girlich and H. J. Rossberg, Eine neue Methode zum Studium des Zusammenhanges zwischen charakteristischen Funktionen und Momenten sowie Semi-Invarianten, Math. Nachr. 51 (1971), 123–147. · Zbl 0204.51404 · doi:10.1002/mana.19710510111
[76] J. Glimm and A. Jaffe, The {\(\lambda\)}({\(\phi\)}4)2 quantum field theory without cutoffs: II. The field operators and the approximate vacuum, Ann. of Math. (2) 91 (1970), 362–401. · Zbl 0191.27005 · doi:10.2307/1970582
[77] J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer, New York, 1981. · Zbl 0461.46051
[78] H. W. Goelden, On non-degeneracy of the ground state of Schrödinger operators, Math. Z. 155 (1977), 239–247. · Zbl 0353.35032 · doi:10.1007/BF02028443
[79] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corr. and enlarged ed., Academic Press, San Diego, 1980. · Zbl 0521.33001
[80] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, Amer. Math. Soc., Providence, RI, and International Press, Boston, MA, 2009.
[81] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. · Zbl 0695.35060
[82] L. Gross, Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972), 52–109. · Zbl 0237.47012 · doi:10.1016/0022-1236(72)90057-2
[83] G. Grubb, Spectral asymptotics for Robin problems with a discontinuous coefficient, J. Spectr. Th. 1 (2011), 155–177. · Zbl 1223.35146 · doi:10.4171/JST/7
[84] G. Grubb, The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates, J. Math. Anal. Appl. 382 (2011), 339–363. · Zbl 1223.47050 · doi:10.1016/j.jmaa.2011.04.055
[85] H. R. Grümm, Two theorems about e p, Rep. Math. Phys. 4 (1973), 211–215. · Zbl 0258.47022 · doi:10.1016/0034-4877(73)90026-8
[86] P. Gyrya and L. Saloff-Coste, Neumann and Dirichlet Heat Kernels in Inner Uniform Domains, Astérisque 336. · Zbl 1222.58001
[87] P. R. Halmos and V. S. Sunder, Bounded Integral Operators on L 2 Spaces, Springer, Berlin, 1978. · Zbl 0389.47001
[88] I. W. Herbst and A. D. Sloan, Perturbation of translation invariant positivity preserving semigroups on L 2(\(\mathbb{R}\)N), Trans. Amer. Math. Soc. 236 (1978), 325–360. · Zbl 0388.47022
[89] H. Hess, R. Schrader, and D. A. Uhlenbrock, Domination of semigroups and generalization of Kato’s inequality, Duke Math. J. 44 (1977), 893–904. · Zbl 0379.47028 · doi:10.1215/S0012-7094-77-04443-X
[90] R. Jentzsch, Über Integralgleichungen mit positiven Kern, J. Reine Angew. Math. 141 (1912), 235–244. · JFM 43.0429.01
[91] D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), 161–219. · Zbl 0832.35034 · doi:10.1006/jfan.1995.1067
[92] K. Jörgens, Linear Integral Operators, Pitman, Boston, 1982.
[93] I. V. Kamotski and V. G. Maz’ya, On the third boundary value problem in domain with cusps, J. Math. Sci. (N.Y.) 173 (2011), 609–631. · Zbl 1282.35148 · doi:10.1007/s10958-011-0262-5
[94] T. Kato, Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups, in Topics in Functional Analysis: Essays Dedicated to M. G. Krein on the Occasion of his 70th Birthday, Academic Press, New York, 1978, pp. 185–195.
[95] T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980. · Zbl 0435.47001
[96] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0812.35001
[97] J. Kennedy, A Faber-Krahn inequality for the Laplacian with generalised Wentzell boundary conditions, J. Evol. Eq. 8 (2008), 557–582. · Zbl 1154.35413 · doi:10.1007/s00028-008-0393-4
[98] J. B. Kennedy, An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions, Proc. Amer. Math. Soc. 137 (2009), 627–633. · Zbl 1181.35156 · doi:10.1090/S0002-9939-08-09704-9
[99] J. B. Kennedy, On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions, Bull. Aust. Math. Soc. 82 (2010), 348–350. · Zbl 1198.35162 · doi:10.1017/S0004972710000456
[100] J. B. Kennedy, On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians, Z. Angew. Math. Phys. 61 (2010), 781–792. · Zbl 1221.35262 · doi:10.1007/s00033-009-0052-9
[101] J. B. Kennedy, The nodal line of the second eigenfunction of the Robin Laplacian in \(\mathbb{R}\)2 can be closed, J. Differential Equations 251 (2011), 3606–3624. · Zbl 1223.35242 · doi:10.1016/j.jde.2011.08.012
[102] A. Kishimoto and D. W. Robinson, Positivity and monotonicity properties of \(\mathbb{C}\) 0-semigroups. II, Comm. Math. Phys. 75 (1980), 84–101. · Zbl 0453.47020 · doi:10.1007/BF01962593
[103] A. Kishimoto and D. W. Robinson, Subordinate semigroups and order properties, J. Austral. Math. Soc. A 31 (1981), 59–76. · Zbl 0491.47021 · doi:10.1017/S1446788700018486
[104] V. B. Korotkov, Integral operators with Carleman kernels, Sov. Math. Dokl. 6 (1965), 1496–1499. · Zbl 0186.20601
[105] H. Kovařík and A. Laptev, Hardy inequalities for Robin Laplacians, J. Funct. Anal. 262 (2012), 4972–4985. · Zbl 1242.26022 · doi:10.1016/j.jfa.2012.03.021
[106] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[107] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 26 (1950), 1–128.
[108] H. Leinfelder, A remark on a paper of Loren D. Pitt, Bayreuter Math. Schr. 11 (1982), 57–66.
[109] J. L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14 (1962), 233–241. · Zbl 0108.11202 · doi:10.2969/jmsj/01420233
[110] V. A. Liskevich and M. A. Perelmuter, Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc. 123 (1995), 1097–1104. · Zbl 0826.47030
[111] V. Liskevich, Z. Sobol, and H. Vogt, On the L p-theory of C 0 -semigroups associated with secondorder elliptic operators, II, J. Funct. Anal. 193 (2002), 55–76. · Zbl 1020.47029 · doi:10.1006/jfan.2001.3909
[112] A. Manavi, H. Vogt, and J. Voigt, Domination of semigroups associated with sectorial forms, J. Operator Theory 54 (2005), 9–25. · Zbl 1104.47044
[113] V. Maz’ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, 2nd, revised and augmented ed., Springer, Berlin, 2011.
[114] V. G. Maz’ya and T. O. Shaposhnikova, Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Springer, Berlin, 2009.
[115] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[116] S. Miyajima and N. Okazawa, Generators of positive \(\mathbb{C}\) 0 -semigroups, Pacific J. Math. 125 (1986), 161–175. · Zbl 0615.47031 · doi:10.2140/pjm.1986.125.161
[117] E. M. Ouhabaz, L -contractivity of semigroups generated by sectorial forms, J. London Math. Soc. (2) 46 (1992), 529–542. · Zbl 0788.47034 · doi:10.1112/jlms/s2-46.3.529
[118] E.-M. Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc. 123 (1995), 1465–1474. · Zbl 0829.47032 · doi:10.1090/S0002-9939-1995-1232142-3
[119] E.-M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential Anal. 5 (1996), 611–625. · Zbl 0868.47029 · doi:10.1007/BF00275797
[120] E. M. Ouhabaz, Gaussian upper bounds for heat kernels of second-order elliptic operators with complex coefficients on arbitrary domains, J. Operator Theory 51 (2004), 335–360. · Zbl 1107.35056
[121] E. M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton University Press, Princeton, NJ, 2005. · Zbl 1082.35003
[122] E. M. Ouhabaz, Sharp Gaussian bounds and L p-growth of semigroups associated with elliptic and Schrödinger operators, Proc. Amer. Math. Soc. 134 (2006), 3567–3575. · Zbl 1113.47032 · doi:10.1090/S0002-9939-06-08430-9
[123] V. G. Papanicolaou, The probabilistic solution of the third boundary problem for second order elliptic equations, Probab. Theory Related Fields 87 (1990), 27–77. · Zbl 0688.60063 · doi:10.1007/BF01217746
[124] V. V. Peller, Hankel operators of classSp and their applications (rational approximation, Gaussian processes, the problem of majorizing operators), Math. USSR-Sb. 41 (1982), 443–479. · Zbl 0478.47015 · doi:10.1070/SM1982v041n04ABEH002242
[125] M. A. Perelmuter, Positivity preserving operators and one criterion of essential self-adjointness, J. Math. Anal. Appl. 82 (1981), 406–419. · Zbl 0482.47017 · doi:10.1016/0022-247X(81)90206-7
[126] O. Perron, Zur Theorie der Matrices, Math. Ann. 64 (1907), 248–263. · JFM 38.0202.01 · doi:10.1007/BF01449896
[127] L. D. Pitt, A compactness condition for linear operators on function spaces, J. Operator Theory 1 (1979), 49–54. · Zbl 0441.47042
[128] A. G. Ramm and L. Li, Estimates for Green’s functions, Proc. Amer. Math. Soc. 103 (1988), 875–881. · Zbl 0685.35010
[129] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford University Press, Oxford, 1991. · Zbl 0747.47030
[130] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. · Zbl 0401.47001
[131] G. Rozenblum, Semigroup domination and eigenvalue estimates, St. Petersburg Math. J. 12 (2001), 831–845.
[132] A. R. Schep, Weak Kato-inequalities and positive semigroups, Math. Z. 190 (1985), 305–314. · Zbl 0609.47050 · doi:10.1007/BF01215132
[133] B. Simon, Ergodic semigroups of positivity preserving self-adjoint operators, J. Funct. Anal. 12 (1973), 335–339. · Zbl 0252.47034 · doi:10.1016/0022-1236(73)90084-0
[134] B. Simon, An abstract Kato’s inequality for generators of positivity preserving semigroups, Indiana Univ. Math. J. 26 (1977), 1067–1073. · Zbl 0389.47021 · doi:10.1512/iumj.1977.26.26086
[135] B. Simon, Classical boundary conditions as a technical tool in modern mathematical physics, Adv. Math. 30 (1978), 268–281. · Zbl 0414.35069 · doi:10.1016/0001-8708(78)90040-3
[136] B. Simon, Kato’s inequality and the comparison of semigroups, J. Funct. Anal. 32 (1979), 97–101. · Zbl 0413.47037 · doi:10.1016/0022-1236(79)90079-X
[137] B. Simon, Trace Ideals and Their Applications, 2nd ed., Amer. Math. Soc., Providence, RI, 2005. · Zbl 1074.47001
[138] Z. Sobol and H. Vogt, On the L p-theory of \(\mathbb{C}\) 0 -semigroups associated with second-order elliptic operators, I, J. Funct. Anal. 193 (2002), 24–54. · Zbl 1020.47028 · doi:10.1006/jfan.2001.3908
[139] P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), 109–138. · Zbl 0861.31004 · doi:10.1007/BF00396775
[140] J. L. Taylor, S. Kim, and R.M. Brown, The Green function for elliptic systems in two dimension, Commun. Partial Differential Equations 38 (2013), 1574–1600. · Zbl 1279.35021 · doi:10.1080/03605302.2013.814668
[141] H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut. 15 (2002), 475–524. · Zbl 1034.46033 · doi:10.5209/rev_REMA.2002.v15.n2.16910
[142] M. van den Berg, Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal. 88 (1990), 267–278. · Zbl 0705.35052 · doi:10.1016/0022-1236(90)90106-U
[143] M. Warma, The Laplacian with General Boundary Conditions, Ph.D. Thesis, Faculty of Mathematics, University of Ulm, 2002.
[144] M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains, Semigroup Forum 73 (2006), 10–30. · Zbl 1168.35340 · doi:10.1007/s00233-006-0617-2
[145] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980. · Zbl 0434.47001
[146] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987. · Zbl 0623.35006
[147] D. R. Yafaev, Mathematical Scattering Theory. General Theory, Amer. Math. Soc., Providence, RI, 1992. · Zbl 0761.47001
[148] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Amer. Math. Soc., Providence, RI, 2010. · Zbl 1197.35006
[149] P. P. Zabreyko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, L. S. Rakovshchik, and V. Ya. Stet’senko, Integral Equations – A Reference Text, Noordhoff International Publ., Leyden, 1975
[150] E.M. E. Zayed, Short-time asymptotics of the heat kernel of the Laplacian of a bounded domain with Robin boundary conditions, Houston J. Math. 24 (1998), 377–385. · Zbl 0966.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.