Kumar, Susheel Generalized growth of special monogenic functions having finite convergence radius. (English) Zbl 1483.30091 Thai J. Math. 19, No. 1, 251-260 (2021). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar}, Thai J. Math. 19, No. 1, 251--260 (2021; Zbl 1483.30091) Full Text: Link
Alpay, D.; Colombo, F.; Pinton, S.; Sabadini, I.; Struppa, D. C. Infinite-order differential operators acting on entire hyperholomorphic functions. (English) Zbl 1484.30050 J. Geom. Anal. 31, No. 10, 9768-9799 (2021). Reviewer: Pan Lian (Tianjin) MSC: 30G35 32A15 47B38 PDF BibTeX XML Cite \textit{D. Alpay} et al., J. Geom. Anal. 31, No. 10, 9768--9799 (2021; Zbl 1484.30050) Full Text: DOI arXiv
Zayed, Mohra Lower growth of generalized Hadamard product functions in Clifford setting. (English) Zbl 1462.30104 Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 805-826 (2021). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{M. Zayed}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 805--826 (2021; Zbl 1462.30104) Full Text: DOI
Abul-Ez, M.; Abd-Elmageed, H.; Hidan, M.; Abdalla, M. On the growth order and growth type of entire functions of several complex matrices. (English) Zbl 1436.32010 J. Funct. Spaces 2020, Article ID 4027529, 9 p. (2020). Reviewer: Andriy Bandura (Ivano-Frankivsk) MSC: 32A15 32A22 PDF BibTeX XML Cite \textit{M. Abul-Ez} et al., J. Funct. Spaces 2020, Article ID 4027529, 9 p. (2020; Zbl 1436.32010) Full Text: DOI
Abdalla, M.; Abul-Ez, M. The growth of generalized Hadamard product of entire axially monogenic functions. (English) Zbl 1488.30238 Hacet. J. Math. Stat. 47, No. 5, 1231-1239 (2018). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{M. Abdalla} and \textit{M. Abul-Ez}, Hacet. J. Math. Stat. 47, No. 5, 1231--1239 (2018; Zbl 1488.30238) Full Text: Link
Kumar, Susheel Generalized slow growth of special monogenic functions. (English) Zbl 1339.30021 J. Appl. Anal. 22, No. 1, 67-79 (2016). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar}, J. Appl. Anal. 22, No. 1, 67--79 (2016; Zbl 1339.30021) Full Text: DOI
De Almeida, R.; Kraußhar, R. S. Basics on growth orders of polymonogenic functions. (English) Zbl 1341.30043 Complex Var. Elliptic Equ. 60, No. 11, 1480-1504 (2015). Reviewer: Linda R. Sons (DeKalb) MSC: 30G35 PDF BibTeX XML Cite \textit{R. De Almeida} and \textit{R. S. Kraußhar}, Complex Var. Elliptic Equ. 60, No. 11, 1480--1504 (2015; Zbl 1341.30043) Full Text: DOI
Kumar, Susheel Generalized growth of special monogenic functions. (English) Zbl 1310.30041 J. Complex Anal. 2014, Article ID 510232, 5 p. (2014). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar}, J. Complex Anal. 2014, Article ID 510232, 5 p. (2014; Zbl 1310.30041) Full Text: DOI
Kumar, Susheel; Bala, Kirandeep Generalized growth of monogenic Taylor series of finite convergence radius. (English) Zbl 1300.30091 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 59, No. 1, 127-140 (2013). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{K. Bala}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 59, No. 1, 127--140 (2013; Zbl 1300.30091) Full Text: DOI
Srivastava, Girja S.; Kumar, Susheel On the generalized order and generalized type of entire monogenic functions. (English) Zbl 1290.30062 Demonstr. Math. 46, No. 4, 663-677 (2013). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{G. S. Srivastava} and \textit{S. Kumar}, Demonstr. Math. 46, No. 4, 663--677 (2013; Zbl 1290.30062) Full Text: DOI
Abul-Ez, M. A.; De Almeida, R. On the lower order and type of entire axially monogenic functions. (English) Zbl 1270.30017 Result. Math. 63, No. 3-4, 1257-1275 (2013). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{M. A. Abul-Ez} and \textit{R. De Almeida}, Result. Math. 63, No. 3--4, 1257--1275 (2013; Zbl 1270.30017) Full Text: DOI
Zayed, Mohra; Abul-Ez, Mahmoud; Morais, João Pedro Generalized derivative and primitive of Cliffordian bases of polynomials constructed through Appell monomials. (English) Zbl 1257.30058 Comput. Methods Funct. Theory 12, No. 2, 501-515 (2012). MSC: 30G35 41A10 PDF BibTeX XML Cite \textit{M. Zayed} et al., Comput. Methods Funct. Theory 12, No. 2, 501--515 (2012; Zbl 1257.30058) Full Text: DOI
Constales, D.; De Almeida, R.; Kraußhar, Rolf Sören Wiman-Valiron theory for the Dirac-Hodge equation on upper half-space of \(\mathbb R^{n+1}\). (English) Zbl 1234.30038 J. Math. Anal. Appl. 378, No. 1, 238-251 (2011). Reviewer: Klaus Habetha (Aachen) MSC: 30G35 30D15 30A05 PDF BibTeX XML Cite \textit{D. Constales} et al., J. Math. Anal. Appl. 378, No. 1, 238--251 (2011; Zbl 1234.30038) Full Text: DOI
Constales, D.; De Almeida, R.; Kraußhar, R. S. Basics of a generalized Wiman-Valiron theory for monogenic Taylor series of finite convergence radius. (English) Zbl 1208.30044 Math. Z. 266, No. 3, 665-681 (2010). Reviewer: Klaus Habetha (Aachen) MSC: 30G35 30D99 PDF BibTeX XML Cite \textit{D. Constales} et al., Math. Z. 266, No. 3, 665--681 (2010; Zbl 1208.30044) Full Text: DOI