Gie, Gung-Min; Jung, Chang-Yeol; Lee, Hoyeon Semi-analytic shooting methods for Burgers’ equation. (English) Zbl 1496.65085 J. Comput. Appl. Math. 418, Article ID 114694, 18 p. (2023). MSC: 65L04 34E15 76R50 PDF BibTeX XML Cite \textit{G.-M. Gie} et al., J. Comput. Appl. Math. 418, Article ID 114694, 18 p. (2023; Zbl 1496.65085) Full Text: DOI OpenURL
Li, Meng; Luo, Xianbing An MLMCE-HDG method for the convection diffusion equation with random diffusivity. (English) Zbl 07625594 Comput. Math. Appl. 127, 127-143 (2022). MSC: 65M60 65N30 65C05 65M12 65C30 PDF BibTeX XML Cite \textit{M. Li} and \textit{X. Luo}, Comput. Math. Appl. 127, 127--143 (2022; Zbl 07625594) Full Text: DOI OpenURL
Zhang, J.; Liu, X. Uniform convergence of a weak Galerkin finite element method on Shishkin mesh for singularly perturbed convection-diffusion problems in 2D. (English) Zbl 1494.65099 Appl. Math. Comput. 432, Article ID 127346, 12 p. (2022). MSC: 65N30 35J10 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Appl. Math. Comput. 432, Article ID 127346, 12 p. (2022; Zbl 1494.65099) Full Text: DOI OpenURL
Liu, Xiaowei; Yang, Min Error estimations in the balanced norm of finite element method on Bakhvalov-Shishkin triangular mesh for reaction-diffusion problems. (English) Zbl 07413918 Appl. Math. Lett. 123, Article ID 107523, 7 p. (2022). MSC: 65N30 65N12 65N50 35B25 35J25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{M. Yang}, Appl. Math. Lett. 123, Article ID 107523, 7 p. (2022; Zbl 07413918) Full Text: DOI OpenURL
Şendur, Ali; Natesan, Srinivasan; Singh, Gautam Error estimates for a fully discrete \(\varepsilon\)-uniform finite element method on quasi uniform meshes. (English) Zbl 1499.65335 Hacet. J. Math. Stat. 50, No. 5, 1306-1324 (2021). MSC: 65L11 65L60 65L70 65N30 PDF BibTeX XML Cite \textit{A. Şendur} et al., Hacet. J. Math. Stat. 50, No. 5, 1306--1324 (2021; Zbl 1499.65335) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Convergence and supercloseness in a balanced norm of finite element methods on Bakhvalov-type meshes for reaction-diffusion problems. (English) Zbl 1477.65250 J. Sci. Comput. 88, No. 1, Paper No. 27, 19 p. (2021). MSC: 65N30 65N50 65N12 65D05 35B25 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, J. Sci. Comput. 88, No. 1, Paper No. 27, 19 p. (2021; Zbl 1477.65250) Full Text: DOI arXiv OpenURL
Jha, Abhinav A residual based a posteriori error estimators for AFC schemes for convection-diffusion equations. (English) Zbl 07384055 Comput. Math. Appl. 97, 86-99 (2021). MSC: 65N30 65N15 35J25 76M10 65M60 PDF BibTeX XML Cite \textit{A. Jha}, Comput. Math. Appl. 97, 86--99 (2021; Zbl 07384055) Full Text: DOI arXiv OpenURL
Kim, Junghwa Asymptotic analysis for elliptic equations with Robin boundary condition. (English) Zbl 1473.35025 Asymptotic Anal. 122, No. 3-4, 257-269 (2021). MSC: 35B25 35C20 35B40 35J25 PDF BibTeX XML Cite \textit{J. Kim}, Asymptotic Anal. 122, No. 3--4, 257--269 (2021; Zbl 1473.35025) Full Text: DOI OpenURL
Echeverría, Carlos; Liesen, Jörg; Tichý, Petr Analysis of the multiplicative Schwarz method for matrices with a special block structure. (English) Zbl 1456.65020 ETNA, Electron. Trans. Numer. Anal. 54, 31-50 (2021). MSC: 65F10 65F35 15A60 PDF BibTeX XML Cite \textit{C. Echeverría} et al., ETNA, Electron. Trans. Numer. Anal. 54, 31--50 (2021; Zbl 1456.65020) Full Text: DOI arXiv Link OpenURL
Zhang, Jin; Liu, Xiaowei Convergence of a finite element method on a Bakhvalov-type mesh for singularly perturbed reaction-diffusion equation. (English) Zbl 07321653 Appl. Math. Comput. 385, Article ID 125403, 8 p. (2020). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Appl. Math. Comput. 385, Article ID 125403, 8 p. (2020; Zbl 07321653) Full Text: DOI OpenURL
Gie, Gung-Min; Jung, Chang-Yeol; Lee, Hoyeon Enriched finite volume approximations of the plane-parallel flow at a small viscosity. (English) Zbl 1447.65051 J. Sci. Comput. 84, No. 1, Paper No. 7, 26 p. (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65N08 76M12 PDF BibTeX XML Cite \textit{G.-M. Gie} et al., J. Sci. Comput. 84, No. 1, Paper No. 7, 26 p. (2020; Zbl 1447.65051) Full Text: DOI OpenURL
Farrell, Patricio; Peschka, Dirk Nonlinear diffusion, boundary layers and nonsmoothness: analysis of challenges in drift-diffusion semiconductor simulations. (English) Zbl 1443.65325 Comput. Math. Appl. 78, No. 12, 3731-3747 (2019). MSC: 65N30 65N08 PDF BibTeX XML Cite \textit{P. Farrell} and \textit{D. Peschka}, Comput. Math. Appl. 78, No. 12, 3731--3747 (2019; Zbl 1443.65325) Full Text: DOI OpenURL
Le Bris, Claude; Legoll, FreDeRic; Madiot, FrancOis Multiscale finite element methods for advection-dominated problems in perforated domains. (English) Zbl 1423.35022 Multiscale Model. Simul. 17, No. 2, 773-825 (2019). MSC: 35B27 65M60 65M12 35J25 PDF BibTeX XML Cite \textit{C. Le Bris} et al., Multiscale Model. Simul. 17, No. 2, 773--825 (2019; Zbl 1423.35022) Full Text: DOI arXiv OpenURL
Hofer, Christoph; Langer, Ulrich; Neumüller, Martin; Schneckenleitner, Rainer Parallel and robust preconditioning for Space-Time isogeometric analysis of parabolic evolution problems. (English) Zbl 1420.65022 SIAM J. Sci. Comput. 41, No. 3, A1793-A1821 (2019). MSC: 65F08 65M60 PDF BibTeX XML Cite \textit{C. Hofer} et al., SIAM J. Sci. Comput. 41, No. 3, A1793--A1821 (2019; Zbl 1420.65022) Full Text: DOI OpenURL
Mukherjee, Kaushik; Natesan, Srinivasan Parameter-uniform fractional step hybrid numerical scheme for 2D singularly perturbed parabolic convection-diffusion problems. (English) Zbl 1422.65176 J. Appl. Math. Comput. 60, No. 1-2, 51-86 (2019). MSC: 65M06 65M12 35B25 PDF BibTeX XML Cite \textit{K. Mukherjee} and \textit{S. Natesan}, J. Appl. Math. Comput. 60, No. 1--2, 51--86 (2019; Zbl 1422.65176) Full Text: DOI OpenURL
Hamouda, Makram; Han, Daozhi; Jung, Chang-Yeol; Tawri, Krutika; Temam, Roger Boundary layers for the subcritical modes of the 3D primitive equations in a cube. (English) Zbl 1483.35162 J. Differ. Equations 267, No. 1, 61-96 (2019). MSC: 35Q35 PDF BibTeX XML Cite \textit{M. Hamouda} et al., J. Differ. Equations 267, No. 1, 61--96 (2019; Zbl 1483.35162) Full Text: DOI OpenURL
Yin, Yunhui; Zhu, Peng The streamline-diffusion finite element method on graded meshes for a convection-diffusion problem. (English) Zbl 1456.65169 Appl. Numer. Math. 138, 19-29 (2019). MSC: 65N30 65N12 65N15 35B25 PDF BibTeX XML Cite \textit{Y. Yin} and \textit{P. Zhu}, Appl. Numer. Math. 138, 19--29 (2019; Zbl 1456.65169) Full Text: DOI OpenURL
Matculevich, Svetlana; Wolfmayr, Monika On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems. (English) Zbl 1428.82048 Appl. Math. Comput. 339, 779-804 (2018). MSC: 82C31 82M10 82M99 65N30 65N15 PDF BibTeX XML Cite \textit{S. Matculevich} and \textit{M. Wolfmayr}, Appl. Math. Comput. 339, 779--804 (2018; Zbl 1428.82048) Full Text: DOI arXiv OpenURL
Sendur, Ali A comparative study on stabilized finite element methods for the convection-diffusion-reaction problems. (English) Zbl 1437.65199 J. Appl. Math. 2018, Article ID 4259634, 16 p. (2018). MSC: 65N30 76M10 35J25 65N12 PDF BibTeX XML Cite \textit{A. Sendur}, J. Appl. Math. 2018, Article ID 4259634, 16 p. (2018; Zbl 1437.65199) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers. (English) Zbl 1409.65095 Comput. Math. Appl. 75, No. 2, 444-458 (2018). MSC: 65N30 65N50 35B25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Comput. Math. Appl. 75, No. 2, 444--458 (2018; Zbl 1409.65095) Full Text: DOI OpenURL
Teofanov, Lj.; Brdar, M.; Franz, S.; Zarin, H. SDFEM for an elliptic singularly perturbed problem with two parameters. (English) Zbl 1407.65264 Calcolo 55, No. 4, Paper No. 50, 20 p. (2018). MSC: 65N30 65N12 65N15 65N50 35B25 35J25 PDF BibTeX XML Cite \textit{Lj. Teofanov} et al., Calcolo 55, No. 4, Paper No. 50, 20 p. (2018; Zbl 1407.65264) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Supercloseness of continuous interior penalty methods on Shishkin triangular meshes and hybrid meshes for singularly perturbed problems with characteristic layers. (English) Zbl 1401.65137 J. Sci. Comput. 76, No. 3, 1633-1656 (2018). MSC: 65N30 65N50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, J. Sci. Comput. 76, No. 3, 1633--1656 (2018; Zbl 1401.65137) Full Text: DOI OpenURL
Hofer, Christoph; Langer, Ulrich; Neumüller, Martin; Toulopoulos, Ioannis Time-multipatch discontinuous Galerkin space-time isogeometric analysis of parabolic evolution problems. (English) Zbl 1394.35212 ETNA, Electron. Trans. Numer. Anal. 49, 126-150 (2018). MSC: 35K20 65M12 65M15 65M55 PDF BibTeX XML Cite \textit{C. Hofer} et al., ETNA, Electron. Trans. Numer. Anal. 49, 126--150 (2018; Zbl 1394.35212) Full Text: DOI Link OpenURL
Di, Yana; Xie, Hehu; Yin, Xiaobo Anisotropic meshes and stabilization parameter design of linear SUPG method for 2D convection-dominated convection-diffusion equations. (English) Zbl 1397.65259 J. Sci. Comput. 76, No. 1, 48-68 (2018). MSC: 65N30 65N50 65N12 PDF BibTeX XML Cite \textit{Y. Di} et al., J. Sci. Comput. 76, No. 1, 48--68 (2018; Zbl 1397.65259) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers. (English) Zbl 1397.65280 Numer. Algorithms 78, No. 2, 465-483 (2018). Reviewer: Noureddine Daili (Sétif) MSC: 65N30 65N50 65N15 65L50 65L20 65M25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Numer. Algorithms 78, No. 2, 465--483 (2018; Zbl 1397.65280) Full Text: DOI OpenURL
Du, Kui; Huang, Yunqing; Wang, Yiwei On two generalized inverse eigenvalue problems for Hessenberg-upper triangular pencils and their application to the study of GMRES convergence. (English) Zbl 1391.65094 Linear Algebra Appl. 553, 16-36 (2018). MSC: 65F18 65F10 PDF BibTeX XML Cite \textit{K. Du} et al., Linear Algebra Appl. 553, 16--36 (2018; Zbl 1391.65094) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with exponential layers. (English) Zbl 1448.65251 BIT 58, No. 1, 221-246 (2018). MSC: 65N30 65N12 65N50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, BIT 58, No. 1, 221--246 (2018; Zbl 1448.65251) Full Text: DOI OpenURL
Hsieh, Po-Wen; Yang, Suh-Yuh; You, Cheng-Shu A robust finite difference scheme for strongly coupled systems of singularly perturbed convection-diffusion equations. (English) Zbl 1383.65132 Numer. Methods Partial Differ. Equations 34, No. 1, 121-144 (2018). MSC: 65N06 35J25 35B25 76W05 76M20 65N12 PDF BibTeX XML Cite \textit{P.-W. Hsieh} et al., Numer. Methods Partial Differ. Equations 34, No. 1, 121--144 (2018; Zbl 1383.65132) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Supercloseness of the continuous interior penalty method for singularly perturbed problems in 1D: vertex-cell interpolation. (English) Zbl 1377.65097 Appl. Numer. Math. 123, 88-98 (2018). MSC: 65L10 65L11 34B05 34E15 65L50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Appl. Numer. Math. 123, 88--98 (2018; Zbl 1377.65097) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Galerkin finite element methods for convection-diffusion problems with exponential layers on Shishkin triangular meshes and hybrid meshes. (English) Zbl 1411.65153 Appl. Math. Comput. 307, 244-256 (2017). MSC: 65N30 65N12 65N50 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Appl. Math. Comput. 307, 244--256 (2017; Zbl 1411.65153) Full Text: DOI OpenURL
Jha, Navnit; Kumar, Neelesh A fourth-order accurate quasi-variable mesh compact finite-difference scheme for two-space dimensional convection-diffusion problems. (English) Zbl 1422.65316 Adv. Difference Equ. 2017, Paper No. 64, 13 p. (2017). MSC: 65N06 35J57 65N12 PDF BibTeX XML Cite \textit{N. Jha} and \textit{N. Kumar}, Adv. Difference Equ. 2017, Paper No. 64, 13 p. (2017; Zbl 1422.65316) Full Text: DOI OpenURL
Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics. (English) Zbl 1378.82030 J. Comput. Phys. 346, 497-513 (2017). MSC: 82B80 82D37 65N08 65N15 PDF BibTeX XML Cite \textit{P. Farrell} et al., J. Comput. Phys. 346, 497--513 (2017; Zbl 1378.82030) Full Text: DOI OpenURL
Joshi, Vaibhav; Jaiman, Rajeev K. A positivity preserving variational method for multi-dimensional convection-diffusion-reaction equation. (English) Zbl 1380.65272 J. Comput. Phys. 339, 247-284 (2017). MSC: 65M60 35A15 76R50 65M12 PDF BibTeX XML Cite \textit{V. Joshi} and \textit{R. K. Jaiman}, J. Comput. Phys. 339, 247--284 (2017; Zbl 1380.65272) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems. (English) Zbl 1375.65154 Appl. Math. Lett. 69, 61-66 (2017). MSC: 65N30 35J25 35B25 65N12 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Appl. Math. Lett. 69, 61--66 (2017; Zbl 1375.65154) Full Text: DOI arXiv OpenURL
Zhang, Jin; Liu, Xiaowei Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. (English) Zbl 1377.65153 Adv. Comput. Math. 43, No. 4, 759-775 (2017). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N12 65N50 35J25 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Adv. Comput. Math. 43, No. 4, 759--775 (2017; Zbl 1377.65153) Full Text: DOI arXiv OpenURL
Farrell, Patricio; Linke, Alexander Uniform second order convergence of a complete flux scheme on unstructured 1D grids for a singularly perturbed advection-diffusion equation and some multidimensional extensions. (English) Zbl 1378.65150 J. Sci. Comput. 72, No. 1, 373-395 (2017). Reviewer: Srinivasan Natesan (Assam) MSC: 65L11 65L20 65L50 34B05 34E15 65L12 65L10 PDF BibTeX XML Cite \textit{P. Farrell} and \textit{A. Linke}, J. Sci. Comput. 72, No. 1, 373--395 (2017; Zbl 1378.65150) Full Text: DOI OpenURL
Hsieh, Po-Wen; Yang, Suh-Yuh A new stabilized linear finite element method for solving reaction-convection-diffusion equations. (English) Zbl 1439.76074 Comput. Methods Appl. Mech. Eng. 307, 362-382 (2016). MSC: 76M10 65N30 65N12 65N15 35K57 35Q35 PDF BibTeX XML Cite \textit{P.-W. Hsieh} and \textit{S.-Y. Yang}, Comput. Methods Appl. Mech. Eng. 307, 362--382 (2016; Zbl 1439.76074) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Convergence in \(L^{2}\) norm of the SDFEM on a Shishkin triangular mesh for problems with characteristic layers. (English) Zbl 1410.65461 Appl. Math. Comput. 287-288, 171-183 (2016). MSC: 65N30 35B25 35J25 65N12 65N50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Appl. Math. Comput. 287--288, 171--183 (2016; Zbl 1410.65461) Full Text: DOI OpenURL
Faure, Sylvain; Tekitek, Mohamed Mahdi; Temam, Roger Finite volume approximation of stiff problems on two-dimensional curvilinear domain. (English) Zbl 1356.65232 Int. J. Comput. Math. 93, No. 10, 1787-1799 (2016). MSC: 65N08 35J25 65N50 PDF BibTeX XML Cite \textit{S. Faure} et al., Int. J. Comput. Math. 93, No. 10, 1787--1799 (2016; Zbl 1356.65232) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Analysis of SDFEM on Shishkin triangular meshes and hybrid meshes for problems with characteristic layers. (English) Zbl 1353.65127 J. Sci. Comput. 68, No. 3, 1299-1316 (2016). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 65N50 35J25 35B25 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, J. Sci. Comput. 68, No. 3, 1299--1316 (2016; Zbl 1353.65127) Full Text: DOI arXiv OpenURL
Duan, Huoyuan; Qiu, Fengjuan A new stabilized finite element method for advection-diffusion-reaction equations. (English) Zbl 1382.65390 Numer. Methods Partial Differ. Equations 32, No. 2, 616-645 (2016). MSC: 65N30 65N12 35K57 PDF BibTeX XML Cite \textit{H. Duan} and \textit{F. Qiu}, Numer. Methods Partial Differ. Equations 32, No. 2, 616--645 (2016; Zbl 1382.65390) Full Text: DOI OpenURL
Jung, Chang-Yeol; Nguyen, Thien Binh New time differencing methods for spectral methods. (English) Zbl 1332.74051 J. Sci. Comput. 66, No. 2, 650-671 (2016). MSC: 74S25 65L04 34E15 80M35 76R50 35B40 80M12 76M22 PDF BibTeX XML Cite \textit{C.-Y. Jung} and \textit{T. B. Nguyen}, J. Sci. Comput. 66, No. 2, 650--671 (2016; Zbl 1332.74051) Full Text: DOI OpenURL
Temam, Roger; Jung, Chang-Yeol; Gie, Gung-Min Recent progresses in boundary layer theory. (English) Zbl 1343.35016 Discrete Contin. Dyn. Syst. 36, No. 5, 2521-2583 (2016). MSC: 35B25 35C20 76D10 35K05 PDF BibTeX XML Cite \textit{R. Temam} et al., Discrete Contin. Dyn. Syst. 36, No. 5, 2521--2583 (2016; Zbl 1343.35016) Full Text: DOI OpenURL
Hamouda, Makram; Jung, Chang-Yeol; Temam, Roger Boundary layers for the 3D primitive equations in a cube: the supercritical modes. (English) Zbl 1382.35306 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 132, 288-317 (2016). MSC: 35Q86 86A10 35B25 35Q35 PDF BibTeX XML Cite \textit{M. Hamouda} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 132, 288--317 (2016; Zbl 1382.35306) Full Text: DOI OpenURL
Jung, Chang-Yeol; Nguyen, Thien Binh Semi-analytical time differencing methods for stiff problems. (English) Zbl 1328.74086 J. Sci. Comput. 63, No. 2, 355-373 (2015). MSC: 74S25 65L04 34E15 80M35 76R50 35B40 80M12 PDF BibTeX XML Cite \textit{C.-Y. Jung} and \textit{T. B. Nguyen}, J. Sci. Comput. 63, No. 2, 355--373 (2015; Zbl 1328.74086) Full Text: DOI OpenURL
Hong, Youngjoon; Jung, Chang-Yeol; Temam, Roger Singular perturbation analysis of time dependent convection-diffusion equations in a circle. (English) Zbl 1320.35026 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 119, 127-148 (2015). MSC: 35B25 35K20 35A35 65M60 PDF BibTeX XML Cite \textit{Y. Hong} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 119, 127--148 (2015; Zbl 1320.35026) Full Text: DOI OpenURL
Hong, Youngjoon Numerical approximation of the singularly perturbed heat equation in a circle. (English) Zbl 1315.65087 J. Sci. Comput. 62, No. 1, 1-24 (2015). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65M60 35B25 35K05 65M50 65M12 PDF BibTeX XML Cite \textit{Y. Hong}, J. Sci. Comput. 62, No. 1, 1--24 (2015; Zbl 1315.65087) Full Text: DOI arXiv OpenURL
Meurant, Gérard; Tebbens, Jurjen Duintjer The role eigenvalues play in forming GMRES residual norms with non-normal matrices. (English) Zbl 1312.65050 Numer. Algorithms 68, No. 1, 143-165 (2015). Reviewer: Constantin Popa (Constanţa) MSC: 65F10 PDF BibTeX XML Cite \textit{G. Meurant} and \textit{J. D. Tebbens}, Numer. Algorithms 68, No. 1, 143--165 (2015; Zbl 1312.65050) Full Text: DOI OpenURL
Wang, Caihua A new way to generate an exponential finite difference scheme for 2D convection-diffusion equations. (English) Zbl 1442.65327 J. Appl. Math. 2014, Article ID 457938, 14 p. (2014). MSC: 65N06 65N12 76M20 PDF BibTeX XML Cite \textit{C. Wang}, J. Appl. Math. 2014, Article ID 457938, 14 p. (2014; Zbl 1442.65327) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Comparison of SUPG with bubble stabilization parameters and the standard SUPG. (English) Zbl 1470.76058 Abstr. Appl. Anal. 2014, Article ID 364675, 8 p. (2014). MSC: 76M10 65N30 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Abstr. Appl. Anal. 2014, Article ID 364675, 8 p. (2014; Zbl 1470.76058) Full Text: DOI OpenURL
Chen, Huangxin; Fu, Guosheng; Li, Jingzhi; Qiu, Weifeng First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems. (English) Zbl 1369.65144 Comput. Math. Appl. 68, No. 12, Part A, 1635-1652 (2014). MSC: 65N30 65N12 65N15 35J25 35Q35 76M10 PDF BibTeX XML Cite \textit{H. Chen} et al., Comput. Math. Appl. 68, No. 12, Part A, 1635--1652 (2014; Zbl 1369.65144) Full Text: DOI arXiv OpenURL
de Frutos, Javier; García-Archilla, Bosco; John, Volker; Novo, Julia An adaptive SUPG method for evolutionary convection-diffusion equations. (English) Zbl 1296.76090 Comput. Methods Appl. Mech. Eng. 273, 219-237 (2014). MSC: 76M10 65M60 35K57 35K20 PDF BibTeX XML Cite \textit{J. de Frutos} et al., Comput. Methods Appl. Mech. Eng. 273, 219--237 (2014; Zbl 1296.76090) Full Text: DOI OpenURL
Hong, Youngjoon; Jung, Chang-Yeol; Temam, Roger On the numerical approximations of stiff convection-diffusion equations in a circle. (English) Zbl 1295.65112 Numer. Math. 127, No. 2, 291-313 (2014). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 35J25 65N50 65N15 PDF BibTeX XML Cite \textit{Y. Hong} et al., Numer. Math. 127, No. 2, 291--313 (2014; Zbl 1295.65112) Full Text: DOI OpenURL
Abdulle, A.; Huber, M. E. Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales. (English) Zbl 1296.65150 Numer. Math. 126, No. 4, 589-633 (2014). Reviewer: Ivan Secrieru (Chişinău) MSC: 65N30 65N55 65N12 65N15 35J25 PDF BibTeX XML Cite \textit{A. Abdulle} and \textit{M. E. Huber}, Numer. Math. 126, No. 4, 589--633 (2014; Zbl 1296.65150) Full Text: DOI OpenURL
Jung, Chang-Yeol; Temam, Roger Singularly perturbed problems with a turning point: the non-compatible case. (English) Zbl 1296.34138 Anal. Appl., Singap. 12, No. 3, 293-321 (2014). Reviewer: Robert Vrabel (Trnava) MSC: 34E20 34B05 34E05 PDF BibTeX XML Cite \textit{C.-Y. Jung} and \textit{R. Temam}, Anal. Appl., Singap. 12, No. 3, 293--321 (2014; Zbl 1296.34138) Full Text: DOI OpenURL
Zhou, Zhaojie; Yu, Xiaoming; Yan, Ningning Local discontinuous Galerkin approximation of convection-dominated diffusion optimal control problems with control constraints. (English) Zbl 1284.65081 Numer. Methods Partial Differ. Equations 30, No. 1, 339-360 (2014). Reviewer: Bülent Karasözen (Ankara) MSC: 65K10 49J20 49M25 PDF BibTeX XML Cite \textit{Z. Zhou} et al., Numer. Methods Partial Differ. Equations 30, No. 1, 339--360 (2014; Zbl 1284.65081) Full Text: DOI OpenURL
Zhang, Zhimin; Zou, Qingsong Some recent advances on vertex centered finite volume element methods for elliptic equations. (English) Zbl 1304.65235 Sci. China, Math. 56, No. 12, 2507-2522 (2013). MSC: 65N08 65N30 65N12 65N15 35J25 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Q. Zou}, Sci. China, Math. 56, No. 12, 2507--2522 (2013; Zbl 1304.65235) Full Text: DOI OpenURL
John, Volker; Novo, Julia A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations. (English) Zbl 1297.65157 Comput. Methods Appl. Mech. Eng. 255, 289-305 (2013). MSC: 65N30 65N15 35K57 PDF BibTeX XML Cite \textit{V. John} and \textit{J. Novo}, Comput. Methods Appl. Mech. Eng. 255, 289--305 (2013; Zbl 1297.65157) Full Text: DOI OpenURL
Raza, Nauman; Butt, Asma Rashid Numerical solutions of singularly perturbed reaction diffusion equation with Sobolev gradients. (English) Zbl 1287.65082 J. Funct. Spaces Appl. 2013, Article ID 542897, 6 p. (2013). MSC: 65M60 35K57 35B25 PDF BibTeX XML Cite \textit{N. Raza} and \textit{A. R. Butt}, J. Funct. Spaces Appl. 2013, Article ID 542897, 6 p. (2013; Zbl 1287.65082) Full Text: DOI OpenURL
Hong, Youngjoon; Jung, Chang-Yeol; Laminie, Jacques Singularly perturbed reaction-diffusion equations in a circle with numerical applications. (English) Zbl 1284.65168 Int. J. Comput. Math. 90, No. 11, 2308-2325 (2013). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65D10 65N12 35J25 35B25 65N50 PDF BibTeX XML Cite \textit{Y. Hong} et al., Int. J. Comput. Math. 90, No. 11, 2308--2325 (2013; Zbl 1284.65168) Full Text: DOI OpenURL
Han, Houde; Huang, Zhongyi Tailored finite point method based on exponential bases for convection-diffusion-reaction equation. (English) Zbl 1262.65169 Math. Comput. 82, No. 281, 213-226 (2013). MSC: 65N30 35J25 35B25 35B50 65N15 PDF BibTeX XML Cite \textit{H. Han} and \textit{Z. Huang}, Math. Comput. 82, No. 281, 213--226 (2013; Zbl 1262.65169) Full Text: DOI OpenURL
Zhang, Jin; Mei, Liquan Pointwise error estimates of the bilinear SDFEM on Shishkin meshes. (English) Zbl 1264.65180 Numer. Methods Partial Differ. Equations 29, No. 2, 422-440 (2013). Reviewer: Qin Mengzhao (Beijing) MSC: 65N15 65N30 35B25 65N50 35J25 65N12 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{L. Mei}, Numer. Methods Partial Differ. Equations 29, No. 2, 422--440 (2013; Zbl 1264.65180) Full Text: DOI OpenURL
Duan, Huo-Yuan; Hsieh, Po-Wen; Tan, Roger C. E.; Yang, Suh-Yuh Analysis of a new stabilized finite element method for the reaction-convection-diffusion equations with a large reaction coefficient. (English) Zbl 1352.65340 Comput. Methods Appl. Mech. Eng. 247-248, 15-36 (2012). MSC: 65M60 35K57 PDF BibTeX XML Cite \textit{H.-Y. Duan} et al., Comput. Methods Appl. Mech. Eng. 247--248, 15--36 (2012; Zbl 1352.65340) Full Text: DOI OpenURL
Munyakazi, Justin B.; Patidar, Kailash C. Novel fitted operator finite difference methods for singularly perturbed elliptic convection-diffusion problems in two dimensions. (English) Zbl 1246.35027 J. Difference Equ. Appl. 18, No. 5, 799-813 (2012). Reviewer: Qin Mengzhao (Beijing) MSC: 35B25 35J25 65N06 65N12 65N15 PDF BibTeX XML Cite \textit{J. B. Munyakazi} and \textit{K. C. Patidar}, J. Difference Equ. Appl. 18, No. 5, 799--813 (2012; Zbl 1246.35027) Full Text: DOI OpenURL
Juhnke, Dominique; Tobiska, Lutz A local projection type stabilization with exponential enrichments applied to one-dimensional advection-diffusion equations. (English) Zbl 1239.65049 Comput. Methods Appl. Mech. Eng. 201-204, 179-190 (2012). MSC: 65L10 65L20 65L11 65L60 PDF BibTeX XML Cite \textit{D. Juhnke} and \textit{L. Tobiska}, Comput. Methods Appl. Mech. Eng. 201--204, 179--190 (2012; Zbl 1239.65049) Full Text: DOI OpenURL
Celiker, Fatih; Zhang, Zhimin; Zhu, Huiqing Nodal superconvergence of SDFEM for singularly perturbed problems. (English) Zbl 1244.65109 J. Sci. Comput. 50, No. 2, 405-433 (2012). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65L10 65L60 65L11 34B15 65L50 65L20 34E15 PDF BibTeX XML Cite \textit{F. Celiker} et al., J. Sci. Comput. 50, No. 2, 405--433 (2012; Zbl 1244.65109) Full Text: DOI OpenURL
Mishra, Nachiketa; Yedida, Sanyasiraju V. S. S. Efficient exponential compact higher order difference scheme for convection dominated problems. (English) Zbl 1245.65147 Math. Comput. Simul. 82, No. 4, 617-628 (2011). MSC: 65N06 35J25 65N12 PDF BibTeX XML Cite \textit{N. Mishra} and \textit{S. V. S. S. Yedida}, Math. Comput. Simul. 82, No. 4, 617--628 (2011; Zbl 1245.65147) Full Text: DOI OpenURL
de Frutos, Javier; García-Archilla, Bosco; Novo, Julia An adaptive finite element method for evolutionary convection dominated problems. (English) Zbl 1239.65063 Comput. Methods Appl. Mech. Eng. 200, No. 49-52, 3601-3612 (2011). MSC: 65M60 35K20 PDF BibTeX XML Cite \textit{J. de Frutos} et al., Comput. Methods Appl. Mech. Eng. 200, No. 49--52, 3601--3612 (2011; Zbl 1239.65063) Full Text: DOI OpenURL
Augustin, Matthias; Caiazzo, Alfonso; Fiebach, André; Fuhrmann, Jürgen; John, Volker; Linke, Alexander; Umla, Rudolf An assessment of discretizations for convection-dominated convection-diffusion equations. (English) Zbl 1230.76021 Comput. Methods Appl. Mech. Eng. 200, No. 47-48, 3395-3409 (2011). MSC: 76M10 76R99 PDF BibTeX XML Cite \textit{M. Augustin} et al., Comput. Methods Appl. Mech. Eng. 200, No. 47--48, 3395--3409 (2011; Zbl 1230.76021) Full Text: DOI OpenURL
Kavčič, I.; Rogina, M.; Bosner, T. Singularly perturbed advection-diffusion-reaction problems: comparison of operator-fitted methods. (English) Zbl 1221.65174 Math. Comput. Simul. 81, No. 10, 2215-2224 (2011). MSC: 65L10 34D15 35K57 65D07 65N35 PDF BibTeX XML Cite \textit{I. Kavčič} et al., Math. Comput. Simul. 81, No. 10, 2215--2224 (2011; Zbl 1221.65174) Full Text: DOI OpenURL
Jung, Chang-Yeol; Temam, Roger Convection-diffusion equations in a circle: the compatible case. (English) Zbl 1228.35021 J. Math. Pures Appl. (9) 96, No. 1, 88-107 (2011). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35B25 76R50 35B40 35J25 PDF BibTeX XML Cite \textit{C.-Y. Jung} and \textit{R. Temam}, J. Math. Pures Appl. (9) 96, No. 1, 88--107 (2011; Zbl 1228.35021) Full Text: DOI OpenURL
Sun, Pengtao; Chen, Long; Xu, Jinchao Numerical studies of adaptive finite element methods for two dimensional convection-dominated problems. (English) Zbl 1203.65261 J. Sci. Comput. 43, No. 1, 24-43 (2010). MSC: 65N30 PDF BibTeX XML Cite \textit{P. Sun} et al., J. Sci. Comput. 43, No. 1, 24--43 (2010; Zbl 1203.65261) Full Text: DOI OpenURL
Hsieh, Po-Wen; Yang, Suh-Yuh Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems. (English) Zbl 1427.76273 J. Comput. Phys. 229, No. 24, 9216-9234 (2010). MSC: 76W05 76M20 35Q35 PDF BibTeX XML Cite \textit{P.-W. Hsieh} and \textit{S.-Y. Yang}, J. Comput. Phys. 229, No. 24, 9216--9234 (2010; Zbl 1427.76273) Full Text: DOI OpenURL
Zhu, Guoqing; Chen, Shaochun Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction-diffusion problems. (English) Zbl 1197.65172 J. Comput. Appl. Math. 234, No. 10, 3048-3063 (2010). Reviewer: Srinivasan Natesan (Assam) MSC: 65N12 65N15 65N30 35J25 35B25 65N50 PDF BibTeX XML Cite \textit{G. Zhu} and \textit{S. Chen}, J. Comput. Appl. Math. 234, No. 10, 3048--3063 (2010; Zbl 1197.65172) Full Text: DOI OpenURL
Acosta, Carlos D.; Mejía, Carlos E. A mollification based operator splitting method for convection diffusion equations. (English) Zbl 1189.65188 Comput. Math. Appl. 59, No. 4, 1397-1408 (2010). MSC: 65M06 35K57 PDF BibTeX XML Cite \textit{C. D. Acosta} and \textit{C. E. Mejía}, Comput. Math. Appl. 59, No. 4, 1397--1408 (2010; Zbl 1189.65188) Full Text: DOI OpenURL
Nguyen, Hoa; Gunzburger, Max; Ju, Lili; Burkardt, John Adaptive anisotropic meshing for steady convection-dominated problems. (English) Zbl 1229.76055 Comput. Methods Appl. Mech. Eng. 198, No. 37-40, 2964-2981 (2009). MSC: 76M10 76R99 PDF BibTeX XML Cite \textit{H. Nguyen} et al., Comput. Methods Appl. Mech. Eng. 198, No. 37--40, 2964--2981 (2009; Zbl 1229.76055) Full Text: DOI Link OpenURL
Tobiska, Lutz On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations. (English) Zbl 1229.76059 Comput. Methods Appl. Mech. Eng. 198, No. 5-8, 831-837 (2009). MSC: 76M10 76R99 PDF BibTeX XML Cite \textit{L. Tobiska}, Comput. Methods Appl. Mech. Eng. 198, No. 5--8, 831--837 (2009; Zbl 1229.76059) Full Text: DOI OpenURL
Han, Houde; Huang, Zhongyi Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions. (English) Zbl 1203.65225 J. Sci. Comput. 41, No. 2, 200-220 (2009). MSC: 65N08 PDF BibTeX XML Cite \textit{H. Han} and \textit{Z. Huang}, J. Sci. Comput. 41, No. 2, 200--220 (2009; Zbl 1203.65225) Full Text: DOI OpenURL
Teofanov, Ljiljana; Zarin, Helena Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem. (English) Zbl 1182.65164 BIT 49, No. 4, 743-765 (2009). MSC: 65N12 65N30 35J25 35B25 PDF BibTeX XML Cite \textit{L. Teofanov} and \textit{H. Zarin}, BIT 49, No. 4, 743--765 (2009; Zbl 1182.65164) Full Text: DOI OpenURL
Matthies, Gunar Local projection methods on layer-adapted meshes for higher order discretisations of convection-diffusion problems. (English) Zbl 1188.65154 Appl. Numer. Math. 59, No. 10, 2515-2533 (2009). Reviewer: Kai Schneider (Marseille) MSC: 65N30 65N15 65N12 PDF BibTeX XML Cite \textit{G. Matthies}, Appl. Numer. Math. 59, No. 10, 2515--2533 (2009; Zbl 1188.65154) Full Text: DOI OpenURL
Giraud, L.; Haidar, A. Parallel algebraic hybrid solvers for large 3D convection-diffusion problems. (English) Zbl 1167.65355 Numer. Algorithms 51, No. 2, 151-177 (2009). MSC: 65F10 35J25 65N55 65F50 65Y05 PDF BibTeX XML Cite \textit{L. Giraud} and \textit{A. Haidar}, Numer. Algorithms 51, No. 2, 151--177 (2009; Zbl 1167.65355) Full Text: DOI OpenURL
Matthies, Gunar Local projection stabilisation for higher order discretisations of convection-diffusion problems on Shishkin meshes. (English) Zbl 1165.65064 Adv. Comput. Math. 30, No. 4, 315-337 (2009). Reviewer: Constantin Popa (Constanţa) MSC: 65N12 65N30 65N15 65N50 35J25 PDF BibTeX XML Cite \textit{G. Matthies}, Adv. Comput. Math. 30, No. 4, 315--337 (2009; Zbl 1165.65064) Full Text: DOI OpenURL
Kennedy, Alan; O’Connor, William J. A TLM method for steady-state convection-diffusion: Some additions and refinements. (English) Zbl 1155.76377 Int. J. Numer. Methods Eng. 77, No. 4, 518-535 (2009). MSC: 76M25 76R99 PDF BibTeX XML Cite \textit{A. Kennedy} and \textit{W. J. O'Connor}, Int. J. Numer. Methods Eng. 77, No. 4, 518--535 (2009; Zbl 1155.76377) Full Text: DOI OpenURL
Chen, ZhongYing; He, ChongNan; Wu, Bin High order finite volume methods for singular perturbation problems. (English) Zbl 1162.65044 Sci. China, Ser. A 51, No. 8, 1391-1400 (2008). Reviewer: Abdallah Bradji (Tebessa) MSC: 65L60 65L10 65L70 34B05 34E15 65L50 65L20 PDF BibTeX XML Cite \textit{Z. Chen} et al., Sci. China, Ser. A 51, No. 8, 1391--1400 (2008; Zbl 1162.65044) Full Text: DOI OpenURL
Kellogg, R. Bruce; Stynes, Martin Layers and corner singularities in singularly perturbed elliptic problems. (English) Zbl 1148.65089 BIT 48, No. 2, 309-314 (2008). MSC: 65N30 65N50 35J25 35B25 65-02 PDF BibTeX XML Cite \textit{R. B. Kellogg} and \textit{M. Stynes}, BIT 48, No. 2, 309--314 (2008; Zbl 1148.65089) Full Text: DOI OpenURL
Zhu, Guoqing; Chen, Shaochun Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction-diffusion problems. (English) Zbl 1155.65093 J. Comput. Appl. Math. 220, No. 1-2, 373-393 (2008). Reviewer: Ziwen Jiang (Shandong) MSC: 65N12 65N15 65N30 35B25 35J25 PDF BibTeX XML Cite \textit{G. Zhu} and \textit{S. Chen}, J. Comput. Appl. Math. 220, No. 1--2, 373--393 (2008; Zbl 1155.65093) Full Text: DOI OpenURL
Zhu, Guoqing; Chen, Shaochun Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems. (English) Zbl 1155.65092 Math. Methods Appl. Sci. 31, No. 12, 1387-1407 (2008). Reviewer: Ana M. Alonso Rodriguez (Povo) MSC: 65N12 65N30 65N15 35J25 35B25 PDF BibTeX XML Cite \textit{G. Zhu} and \textit{S. Chen}, Math. Methods Appl. Sci. 31, No. 12, 1387--1407 (2008; Zbl 1155.65092) Full Text: DOI OpenURL
Jung, Chang-Yeol; Temam, Roger Asymptotic analysis for singularly perturbed convection-diffusion equations with a turning point. (English) Zbl 1144.81363 J. Math. Phys. 48, No. 6, 065301, 27 p. (2007). MSC: 35J25 34E05 34E15 35B25 35C20 76D99 76M45 76R99 PDF BibTeX XML Cite \textit{C.-Y. Jung} and \textit{R. Temam}, J. Math. Phys. 48, No. 6, 065301, 27 p. (2007; Zbl 1144.81363) Full Text: DOI Link OpenURL
Bosner, Tina; Rogina, Mladen Non-uniform exponential tension splines. (English) Zbl 1130.65019 Numer. Algorithms 46, No. 3, 265-294 (2007). Reviewer: Martin D. Buhmann (Gießen) MSC: 65D07 41A50 41A15 PDF BibTeX XML Cite \textit{T. Bosner} and \textit{M. Rogina}, Numer. Algorithms 46, No. 3, 265--294 (2007; Zbl 1130.65019) Full Text: DOI OpenURL
Liu, Jiangguo; Tavener, Simon; Chen, Hongsen ELLAM for resolving the kinematics of two-dimensional resistive magnetohydrodynamic flows. (English) Zbl 1137.82021 J. Comput. Phys. 227, No. 2, 1372-1386 (2007). Reviewer: Iván Abonyi (Budapest) MSC: 82D10 76W05 76R50 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Comput. Phys. 227, No. 2, 1372--1386 (2007; Zbl 1137.82021) Full Text: DOI OpenURL
Tobiska, Lutz Analysis of a new stabilized higher order finite element method for advection-diffusion equations. (English) Zbl 1120.76336 Comput. Methods Appl. Mech. Eng. 196, No. 1-3, 538-550 (2006). MSC: 76M10 76R99 PDF BibTeX XML Cite \textit{L. Tobiska}, Comput. Methods Appl. Mech. Eng. 196, No. 1--3, 538--550 (2006; Zbl 1120.76336) Full Text: DOI OpenURL
Jung, Chang-Yeol; Temam, Roger On parabolic boundary layers for convection-diffusion equations in a channel: Analysis and numerical applications. (English) Zbl 1158.76422 J. Sci. Comput. 28, No. 2-3, 361-410 (2006). MSC: 76M45 76R99 76M10 PDF BibTeX XML Cite \textit{C.-Y. Jung} and \textit{R. Temam}, J. Sci. Comput. 28, No. 2--3, 361--410 (2006; Zbl 1158.76422) Full Text: DOI OpenURL
Jung, Chang-Yeol Numerical approximation of convection-diffusion equations in a channel using boundary layer elements. (English) Zbl 1098.65112 Appl. Numer. Math. 56, No. 6, 756-777 (2006). Reviewer: Gerald W. Hedstrom (Pleasanton) MSC: 65N30 65N15 35B25 35J25 PDF BibTeX XML Cite \textit{C.-Y. Jung}, Appl. Numer. Math. 56, No. 6, 756--777 (2006; Zbl 1098.65112) Full Text: DOI OpenURL