A minimization method and applications to the study of solitons. (English) Zbl 1263.47084

In the paper under review, the authors prove a general abstract theorem that allows to derive existence of a class of solitons related to field equations. Precisely, a solitary wave is a solution of a field equation whose energy travels as a localized packet and which preserves this localization in time. A soliton is a solitary wave which exhibits some strong form of stability so that it has a particle-like behavior. The solitons studied in the paper are suitable minimizers of a constrained functional, and these are called hylomorphic solitons. The abstract theory developed is further applied to problems related to the nonlinear Schrödinger and Klein-Gordon equations.


47J30 Variational methods involving nonlinear operators
35J50 Variational methods for elliptic systems
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI arXiv


[1] Bellazzini, J.; Benci, V.; Bonanno, C.; Micheletti, A.M., Solitons for the nonlinear klein – gordon-equation, Adv. nonlinear stud., 10, 481-500, (2010) · Zbl 1200.35248
[2] Bellazzini, J.; Benci, V.; Ghimenti, M.; Micheletti, A.M., On the existence of the fundamental eigenvalue of an elliptic problem in \(\mathbb{R}^N\), Adv. nonlinear stud., 7, 439-458, (2007) · Zbl 1136.47040
[3] Benci, V., Hylomorphic solitons, Milan J. math., 77, 271-332, (2009) · Zbl 1205.35040
[4] V. Benci, D. Fortunato, Existence of solitons in nonlinear beam equation, http://arxiv.org/abs/1102.5315. · Zbl 1407.74046
[5] Benci, V.; Fortunato, D., Hylomorphic solitons on lattices, Discrete contin. dyn. syst., 28, 875-897, (2010) · Zbl 1205.37081
[6] Benci, V.; Fortunato, D., On the existence of stable charged \(Q\)-balls, J. math. phys., 52, 093701-0937020, (2011), http://arxiv.org/abs/1011.5044 · Zbl 1272.35173
[7] Abrikosov, A.A., On the magnetic properties of superconductors of the second group, Sov. phys. JETP, 5, 1174-1182, (1957)
[8] Nielsen, H.; Olesen, P., Vortex-line models for dual strings, Nuclear phys. B, 61, 45-61, (1973)
[9] Kim, C.; Kim, S.; Kim, Y., Global nontopological vortices, Phys. rev. D, 47, 5434-5443, (1985)
[10] M.S. Volkov, Existence of spinning solitons in field theory, http://arxiv.org/abs/hep-th/0401030, 2004. · Zbl 1117.83305
[11] Volkov, M.S.; Wöhnert, E., Spinning \(Q\)-balls, Phys. rev. D, 66, 085003, (2002)
[12] Vilenkin, A.; Shellard, E.P.S., Cosmic strings and other topological defects, (1994), Cambrige University press Cambridge · Zbl 0978.83052
[13] Benci, V.; Visciglia, N., Solitary waves with non vanishing angular momentum, Adv. nonlinear stud., 3, 151-160, (2003) · Zbl 1030.35051
[14] Badiale, M.; Benci, V.; Rolando, S., A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. eur. math. soc., 9, 355-381, (2007) · Zbl 1149.35033
[15] Badiale, M.; Benci, V.; Rolando, S., Three dimensional vortices in the nonlinear wave equation, Bollettino U.M.I. serie 9, II, 105-134, (2009) · Zbl 1178.35263
[16] Benci, V.; Fortunato, D., Three dimensional vortices in abelian gauge theories, Nonlinear analysis TMA, 70, 4402-4421, (2009) · Zbl 1173.81013
[17] Benci, V.; Fortunato, D., Spinning \(Q\)-balls for the klein – gordon – maxwell equations, Comm. math. phys., 295, 639-668, (2010) · Zbl 1194.78009
[18] Bellazzini, J.; Bonanno, C., Nonlinear Schrödinger equations with strongly singular potentials, Proc. roy. soc. Edinburgh sect. A math., 140, 707-721, (2010) · Zbl 1197.35263
[19] Bellazzini, J.; Bonanno, C.; Siciliano, G., Magnetostatic vortices in two dimensional abelian gauge theory, Mediterranean J. math., 6, 347-366, (2009) · Zbl 1181.35227
[20] Benci, V.; Fortunato, D., Existence of hylomorphic solitary waves in klein – gordon and in klein – gordon – maxwell equations, Rend. lincei mat. appl., 20, 243-279, (2009) · Zbl 1194.35343
[21] Gelfand, I.M.; Fomin, S.V., Calculus of variations, (1963), Prentice-Hall Englewood Cliffs, NJ · Zbl 0127.05402
[22] Palais, R.S., The principle of symmetric criticality, Comm. math. phys., 69, 19-30, (1979) · Zbl 0417.58007
[23] Esteban, M.; Lions, P.L., A compactness lemma, Nonlinear anal., 7, 381-385, (1983) · Zbl 0512.46035
[24] Bellazzini, J.; Benci, V.; Bonanno, C.; Sinibaldi, E., Hylomorphic solitons in the nonlinear klein – gordon equation, Dyn. partial differ. equ., 6, 311-333, (2009) · Zbl 1194.35096
[25] Cazenave, T.; Lions, P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. math. phys., 85, 4, 549-561, (1982) · Zbl 0513.35007
[26] Buslaev, V.S.; Sulem, C., On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Annales de l’institut Henri Poincaré (C) analyse non linéaire, 20, 419-475, (2003) · Zbl 1028.35139
[27] Shatah, J., Stable standing waves of nonlinear klein – gordon equations, Comm. math. phys., 91, 313-327, (1983) · Zbl 0539.35067
[28] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry, I, J. funct. anal., 74, 160-197, (1987) · Zbl 0656.35122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.