Maekawa, Yasunori; Miura, Hideyuki; Prange, Christophe Local energy weak solutions for the Navier-Stokes equations in the half-space. (English) Zbl 1421.35250 Commun. Math. Phys. 367, No. 2, 517-580 (2019). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q30 76D05 35D30 35B44 PDF BibTeX XML Cite \textit{Y. Maekawa} et al., Commun. Math. Phys. 367, No. 2, 517--580 (2019; Zbl 1421.35250) Full Text: DOI arXiv
Han, Pigong Long-time behavior for Navier-Stokes flows in a two-dimensional exterior domain. (English) Zbl 1329.35250 J. Funct. Anal. 270, No. 3, 1091-1152 (2016). MSC: 35Q35 35B40 76D05 76D07 PDF BibTeX XML Cite \textit{P. Han}, J. Funct. Anal. 270, No. 3, 1091--1152 (2016; Zbl 1329.35250) Full Text: DOI
Han, Pigong Decay results of higher-order norms for the Navier-Stokes flows in 3D exterior domains. (English) Zbl 1309.35054 Commun. Math. Phys. 334, No. 1, 397-432 (2015). MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{P. Han}, Commun. Math. Phys. 334, No. 1, 397--432 (2015; Zbl 1309.35054) Full Text: DOI
Wang, Wendong; Zhang, Zhifei On the interior regularity criteria and the number of singular points to the Navier-Stokes equations. (English) Zbl 1304.35510 J. Anal. Math. 123, 139-170 (2014). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, J. Anal. Math. 123, 139--170 (2014; Zbl 1304.35510) Full Text: DOI arXiv
Seregin, Gregory Selected topics of local regularity theory for Navier-Stokes equations. (English) Zbl 1301.35094 Flandoli, Franco (ed.) et al., Topics in mathematical fluid mechanics. Notes of the CIME course, Cetraro, Italy, September 2010. Berlin: Springer; Florence: Fondazione CIME (ISBN 978-3-642-36296-5/pbk; 978-3-642-36297-2/ebook). Lecture Notes in Mathematics 2073. CIME Foundation Subseries, 239-313 (2013). MSC: 35Q30 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{G. Seregin}, Lect. Notes Math. 2073, 239--313 (2013; Zbl 1301.35094) Full Text: DOI
Han, Pigong Interior regularity of weak solutions to the perturbed Navier-Stokes equations. (English) Zbl 1265.35246 Appl. Math., Praha 57, No. 5, 427-444 (2012). Reviewer: Jiří Neústupa (Praha) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{P. Han}, Appl. Math., Praha 57, No. 5, 427--444 (2012; Zbl 1265.35246) Full Text: DOI Link
Han, Pigong; He, Cheng Partial regularity of suitable weak solutions to the four-dimensional incompressible magneto-hydrodynamic equations. (English) Zbl 1256.35081 Math. Methods Appl. Sci. 35, No. 11, 1335-1355 (2012). MSC: 35Q35 35D30 35B65 PDF BibTeX XML Cite \textit{P. Han} and \textit{C. He}, Math. Methods Appl. Sci. 35, No. 11, 1335--1355 (2012; Zbl 1256.35081) Full Text: DOI
Seregin, G. A certain necessary condition of potential blow up for Navier-Stokes equations. (English) Zbl 1253.35105 Commun. Math. Phys. 312, No. 3, 833-845 (2012). Reviewer: Guixiang Xu (Beijing) MSC: 35Q30 35B44 PDF BibTeX XML Cite \textit{G. Seregin}, Commun. Math. Phys. 312, No. 3, 833--845 (2012; Zbl 1253.35105) Full Text: DOI arXiv
Seregin, G. A. Necessary conditions of a potential blow-up for Navier-Stokes equations. (English) Zbl 1304.35504 J. Math. Sci., New York 178, No. 3, 345-352 (2011) and Zap. Nauchn. Semin. POMI 385, 187-199 (2010). MSC: 35Q30 35B44 76D05 PDF BibTeX XML Cite \textit{G. A. Seregin}, J. Math. Sci., New York 178, No. 3, 345--352 (2011; Zbl 1304.35504) Full Text: DOI arXiv
Han, Pigong Regularity of weak solutions to 3D incompressible Navier-Stokes equations. (English) Zbl 1239.35110 J. Evol. Equ. 10, No. 1, 195-204 (2010). MSC: 35Q30 35B65 76D03 76D05 35D30 PDF BibTeX XML Cite \textit{P. Han}, J. Evol. Equ. 10, No. 1, 195--204 (2010; Zbl 1239.35110) Full Text: DOI
Galaktionov, V. A.; Mitidieri, E.; Pohozaev, S. I. On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations. (English) Zbl 1176.35094 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 8, 2930-2952 (2009). Reviewer: Chiu Yeung Chan (Lafayette) MSC: 35K55 35B35 35K30 35K35 35B45 35Q30 PDF BibTeX XML Cite \textit{V. A. Galaktionov} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 8, 2930--2952 (2009; Zbl 1176.35094) Full Text: DOI arXiv